The facile preparation of a monolithic capillary column with surface bound polar ligands for use in hydrophilic interaction capillary electrochromatography is described. It involved the conversion of poly(carboxyethyl acrylate[CEA]-co-ethylene glycol dimethacrylate[EDMA]) precursor monolith (the so-called carboxy monolith) into a Tris bonded monolith by a post-polymerization functionalization process in the presence of a water soluble carbodiimide, namely N-(3-dimethylaminopropyl)-N´-ethylcarbodiimidehydrochloride. The carbodiimide assisted conversion, allowed the covalent attachment of the carboxyl group of the precursor monolith to the amino group of the Tris ligand via a stable amide linkage.
View Article and Find Full Text PDFIn this research report, the previously developed poly(carboxyethyl acrylate-co-ethylene glycol dimethacrylate) precursor monolith (referred to as carboxy monolith) is further exploited in the preparation of a chiral stationary phase for enantiomeric separations. The carboxy monolith precursor was subjected to post polymerization functionalization (PPF) with the chiral selector (S)-(-)-1-(2-naphthyl) ethylamine (NAS) at room temperature in the presence of N, N´-dicyclohexylcarbodiimide (DCC) in chloroform. The DCC, which is an organic soluble carbodiimide, permits the linkage for the amine functionality of the chiral ligand NAS to the carboxy group of the monolithic surface forming a stable amide linkage.
View Article and Find Full Text PDFIn this research report, the post polymerization functionalization (PPF) of a carboxyethyl acrylate (CEA)-co-ethylene glycol dimethacrylate (EDMA) [poly-CEA-co-EDMA)] precursor monolith with 2-aminoanthracene was carried out in the presence of an organic solvent soluble carbodiimide, namely N,N´-dicyclohexylcarbodiimide (DCC), yielding the so-called anthracenyl-poly-CEA-co-EDMA monolith. This novel monolith proved to be an excellent monolithic stationary for reversed-phase capillary electrochromatography (RP-CEC) with hydrophobic and π-π interactions of a wide range of nonpolar solutes including those bearing aryl functional groups in their structures such as polycyclic aromatic hydrocarbons (PAHs), toluene derivatives and aniline derivatives as well as solutes carrying in their structures electron withdrawing substituents such as dinitrophenyl-amino acids (DNP-AAs) and di-DNP-AAs. The retention behaviors of the just mentioned solutes obtained on the anthracenyl-poly-CEA-co-EDMA monolithic column were compared to those obtained on octadecyl-poly-CEA-co-EDMA monolithic column prepared from the same carboxy-precursor monolith.
View Article and Find Full Text PDFA carboxy precursor monolithic column, namely poly(carboxy ethyl acrylate-co-ethylene glycol dimethacrylate) was first produced in a 100 μm i.d. fused-silica capillary and subsequently surface bonded with n-octadecyl (C ) ligands by a post-polymerization functionalization process with octadecylamine in the presence of N,N´-dicyclohexylcarbodiimide.
View Article and Find Full Text PDF