Publications by authors named "Theoni K Georgiou"

We present an approach for the rational development of stimuli-responsive ionogels which can be formulated for precise control of multiple unique ionogel features and fill niche pharmaceutical applications. Ionogels are captivating materials, exhibiting self-healing characteristics, tunable mechanical and structural properties, high thermal stability, and electroconductivity. However, the majority of ionogels developed require complex chemistry, exhibit high viscosity, poor biocompatibility, and low biodegradability.

View Article and Find Full Text PDF

Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated.

View Article and Find Full Text PDF

As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has 'druggable' active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot.

View Article and Find Full Text PDF

Thermoresponsive polymers with the appropriate structure form physical networks upon changes in temperature, and they find utility in formulation science, tissue engineering, and drug delivery. Here, we report a cost-effective biocompatible alternative, namely OEGMA300--BuMA--DEGMA, which forms gels at low concentrations (as low as 2% w/w); OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl ether methacrylate (MM = 300 g mol), -butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate, respectively. This polymer is investigated in depth and is compared to its commercially available counterpart, Poloxamer P407 (Pluronic F127).

View Article and Find Full Text PDF

Organic-inorganic hybrid materials are a promising class of materials for tissue engineering and other biomedical applications. In this systematic study, the effect of the polymer molecular mass (MM) with a linear architecture on hybrid mechanical properties is reported. Well-defined linear poly(methyl methacrylate--(3-(trimethoxysilyl)propyl methacrylate)) polymers with a range of MMs of 9 to 90 kDa and one 90 kDa star-shaped polymer were synthesized and then used to form glass-polymer hybrids.

View Article and Find Full Text PDF

Our group has recently invented a novel series of thermoresponsive ABC triblock terpolymers based on oligo(ethylene glycol) methyl ether methacrylate with average 300 g mol (OEGMA300, A unit), -butyl methacrylate (BuMA, B unit) and di(ethylene glycol) methyl ether methacrylate (DEGMA, C unit) with excellent thermogelling properties. In this study, we investigate how the addition of OEGMA300 homopolymers of varying molar mass (MM) affects the gelation characteristics of the best performing ABC triblock terpolymer. Interestingly, the gelation is not disrupted by the addition of the homopolymers, with the gelation temperature () remaining stable at around 30 °C, depending on the MM and content in OEGMA300 homopolymer.

View Article and Find Full Text PDF

Inorganic-organic hybrid biomaterials made with star polymer poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) and silica which show promising mechanical properties, are 3D printed as bone substitutes for the first time, by direct ink writing of the sol. Three different inorganic:organic ratios of poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate)-star-SiO hybrid inks are printed with pore channels in the range of 100-200 µm. Mechanical properties of the 3D printed scaffolds fall within the range of trabecular bone, and MC3T3 pre-osteoblast cells are able to adhere to the scaffolds in vitro, regardless of their compositions.

View Article and Find Full Text PDF

Tuberculosis (TB) is caused by a bacterial infection that affects a number of human organs, primarily the lungs, but also the liver, spleen, and spine, causing key symptoms of fever, fatigue, and persistent cough, and if not treated properly, can be fatal. Every year, 10 million individuals become ill with active TB resulting with a mortality approximating 1.5 million.

View Article and Find Full Text PDF

Mycobacterium tuberculosis ( M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB).

View Article and Find Full Text PDF

Iron oxide nanostructures have been widely developed for biomedical applications because of their magnetic properties and biocompatibility. In clinical applications, stabilization of these nanostructures against aggregation and nonspecific interactions is typically achieved using weakly anchored polysaccharides, with better-defined and more strongly anchored synthetic polymers not commercially adopted because of their complexity of synthesis and use. Here, we show for the first time stabilization and biocompatibilization of iron oxide nanoparticles by a synthetic homopolymer with strong surface anchoring and a history of clinical use in other applications, poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)].

View Article and Find Full Text PDF

Hybrids with a silica network covalently bonded to a polymer are promising materials for bone repair. Previous work on synthesizing methyl methacrylate (MMA) based copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization gives high tailorability of mechanical properties since sophisticated polymer structures can be designed. However, more flexible hybrids would be beneficial.

View Article and Find Full Text PDF

Unlabelled: Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM).

View Article and Find Full Text PDF

In this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM) and composition but various architectures were successfully synthesized using group transfer polymerization (GTP). These terpolymers were based on tri(ethylene glycol) methyl ether methacrylate (TEGMA, A unit), -butyl methacrylate (BuMA, B unit), and 2-(dimethylamino)ethyl methacrylate (DMAEMA, C unit). Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (AB)C, A(BC), and B(AC); where the units in the brackets are randomly copolymerized.

View Article and Find Full Text PDF

Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks.

View Article and Find Full Text PDF

In this study, the group transfer polymerization (GTP) of the functional monomer 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) is reported to produce polymers of different architectures and topologies. TMSPMA is successfully polymerized and copolymerized with GTP to produce well-defined (co)polymers that can be used to fabricate functional hybrid materials like hydrogels and films.

View Article and Find Full Text PDF

Well-defined ABC triblock copolymers based on two hydrophilic blocks, A and C, and a hydrophobic block B are synthesized and their self-assembly behavior is investigated. Interestingly, at the same solvent, concentration, pH, and temperature, different shape micelles are observed, spherical and worm-like micelles, depending on the preparation method. Specifically, spherical micelles are observed with bulk rehydration while both spherical and worm-like micelles are observed with film rehydration.

View Article and Find Full Text PDF

Well-defined "clickable" homo- and co-polymers were synthesised using a living polymerisation technique. Specifically propargyl methacrylate was successfully homo- and co-polymerised using group transfer polymerisation, GTP. This one-pot synthesis was performed without the need to protect the acetylenic group.

View Article and Find Full Text PDF

Aqueous solutions containing a mixture of polyethylene glycol (PEG) and dextran homopolymers form an aqueous two-phase system which can be emulsified to give a water-in-water emulsion. We show how these emulsions can be stabilized using triblock polymers containing poly[poly(ethylene glycol) methyl ether methacrylate] (PEGMA), poly (n-butyl methacrylate) (BuMA), and poly[2-(dimethylamino) ethyl methacrylate] (DMAEMA) blocks of general structure Pp-Bb-Dd, in which the middle BuMA block is hydrophobic. Low-energy input stirring of mixtures containing equal volumes of PEG- and dex-rich aqueous phases plus 1 wt % of Pp-Bb-Dd stabilizer all form dex-in-PEG emulsions (for the range of Pp-Bb-Dd triblock polymers used here) which have a polymersome-like structure.

View Article and Find Full Text PDF

Polymer-based nanomedicine is a large and fast growing field. Polymer-based systems have been extensively used as therapeutic carriers as well as bioimaging agents for example in tumour diagnosis. However, fewer polymeric systems have been able to combine both therapy and imaging in a new field that is called theranostics (theragnostics).

View Article and Find Full Text PDF

Five model conetworks based on cross-linked star ampholytic copolymers were synthesized by group transfer polymerization. The ampholytic copolymers were based on two hydrophilic monomers: the positively ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the negatively ionizable methacrylic acid (MAA). Ethylene glycol dimethacrylate was used as the cross-linker.

View Article and Find Full Text PDF

Seven amphiphilic conetworks of methacrylic acid (MAA) and a new hydrophobic monomer, 2-butyl-1-octyl-methacrylate (BOMA), were synthesized using group transfer polymerization. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate (THPMA) followed by the removal of the protecting tetrahydropyranyl group by acid hydrolysis after network formation. Both THPMA and BOMA were in-house synthesized.

View Article and Find Full Text PDF

Five star polymers based on the positively ionizable hydrophilic 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the hydrophobic but hydrolyzable tetrahydropyranyl methacrylate (THPMA) were prepared by group-transfer polymerization (GTP) using ethylene glycol dimethacrylate (EGDMA) as the coupling agent. In particular, four isomeric star copolymers (one heteroarm, two star block, and the statistical star), all with a 3:1 DMAEMA:THPMA molar ratio, plus one star homopolymer of DMAEMA, with degrees of polymerization of the arms equal to 15, were synthesized. After star polymer preparation and preliminary characterization, the THPMA units were hydrolyzed to negatively ionizable hydrophilic methacrylic acid (MAA) untis, thus yielding star polyampholytes.

View Article and Find Full Text PDF

Six amphiphilic model conetworks of a new structure, that of cross-linked "in-out" star copolymers, were synthesized by the group transfer polymerization (GTP) of the hydrophobic monomer benzyl methacrylate (BzMA) and the ionizable hydrophilic monomer 2-(dimethylamino)ethyl methacrylate (DMAEMA) in a one-pot preparation. The synthesis took place in tetrahydrofuran (THF) using tetrabutylammonium bibenzoate (TBABB) as the catalyst, 1-methoxy-1-(trimethylsiloxy)-2-methyl-propene (MTS) as the initiator, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Three heteroarm star-, two star block-, one statistical copolymer star-, and one homopolymer star-based networks were prepared.

View Article and Find Full Text PDF

Five star polymers of the ionizable hydrophilic 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the nonionic hydrophilic methoxy hexa(ethylene glycol) methacrylate (HEGMA) were prepared by group transfer polymerization (GTP) using ethylene glycol dimethacrylate (EGDMA) as coupling agent. In particular, four isomeric star copolymers, one heteroarm, two star block and one statistical star, with 90% mol DMAEMA and 10% mol HEGMA, plus one star homopolymer of DMAEMA with degrees of polymerization of the arms equal to 20 were synthesized. The polymers were characterized in terms of their molar masses (MMs) and compositions using gel permeation chromatography (GPC) and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively.

View Article and Find Full Text PDF

Seven star polymers with degrees of polymerization (DPs) of the arms from 10 to 100 and dimensions in the nanometer range were prepared using sequential group transfer polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA, hydrophilic positively ionizable monomer) and ethylene glycol dimethacrylate (hydrophobic neutral cross-linker). The polymers were characterized in tetrahydrofuran by gel permeation chromatography and static light scattering to determine the molecular weights and the weight-average number of arms for each sample. The number of arms of the star polymers varied from 20 to 72.

View Article and Find Full Text PDF