ACS Sustain Chem Eng
July 2024
Fiber reinforced polymer composites (FRPs) are valuable construction materials owing to their strength, durability, and design flexibility; however, conventional FRPs utilize petroleum-based polymer matrices with limited recyclability. Furthermore, fiber reinforcements are made from nonrenewable feedstocks, through expensive and energy intensive processes, making recovery and reuse advantageous. Thus, FRPs that use biobased and degradable or reprocessable matrices would enable a more sustainable product, as both components can be recovered and reused.
View Article and Find Full Text PDFChemically cross-linked polymers offer excellent temperature and solvent resistance, but their high dimensional stability precludes reprocessing. The renewed demand for sustainable and circular polymers from public, industry, and government stakeholders has increased research into recycling thermoplastics, but thermosets have often been overlooked. To address this need for more sustainable thermosets, we have developed a novel bis(1,3-dioxolan-4-one) monomer, derived from the naturally occurring l-(+)-tartaric acid.
View Article and Find Full Text PDFPoor waste management and unchecked consumption underpin our current paradigm of plastics use, which is demonstrably unsustainable in the long term. Nonetheless, the utility and versatility of plastics suggest that the notion of a plastic-free society is also unsustainable. Responses to this conundrum are increasing, and among these are research efforts focused on the development of more sustainable plastics.
View Article and Find Full Text PDF