ReaxFF is a computationally efficient model for reactive molecular dynamics simulations that has been applied to a wide variety of chemical systems. When ReaxFF parameters are not yet available for a chemistry of interest, they must be (re)optimized, for which one defines a set of training data that the new ReaxFF parameters should reproduce. ReaxFF training sets typically contain diverse properties with different units, some of which are more abundant (by orders of magnitude) than others.
View Article and Find Full Text PDFIn this paper, we extend the work of Popelier and Logothetis [J. Organomet. Chem.
View Article and Find Full Text PDFThe effect of confinement within some zeolitic structures on the activity and selectivity of metallocene catalysts for the ethylene oligomerization has been investigated using grand canonical Monte Carlo simulations (GCMC). The following zeolite (host) frameworks displaying different pore sizes, have been studied as solid hosts: mazzite (MAZ), AIPO-8 (AET), UTD-1F (DON), faujasite (FAU), and VPI-5 (VFI). Intermediates and transition states involved in the ethylene trimerization reaction catalyzed by a Ti-based catalyst [(η(5)-C(5)H(4)CMe(2)C(6)H(5))TiCl(3)/MAO] have been used as sorbates (guests).
View Article and Find Full Text PDFA new potential model for polycyclic aromatic hydrocarbons has been developed on the basis of a charged anisotropic united atoms (AUA) potential with six AUA force centers and three electrostatic point charges per aromatic ring. Using quantum mechanical calculations, quadrupolar moments of several aromatic molecules were computed and a correlation has been observed that links the magnitude of the point charges with respect to the number of aromatic rings. The Lennard-Jones parameters of quaternary carbon atoms bridging two aromatic rings have been optimized with the minimization of a dimensionless error criterion incorporating various thermodynamic data of naphthalene.
View Article and Find Full Text PDFMonte Carlo and molecular dynamics simulations have been used in order to test the ability of a three center intermolecular potential for carbon dioxide to reproduce literature experimental thermophysical values. In particular, both the shear viscosity under supercritical conditions and along the phase coexistence line, as well as the thermal conductivity under supercritical conditions, have been calculated. Together with the already reported excellent agreement for the phase coexistence densities, the authors find that the agreement with experimental values is, in general, good, except for the thermal conductivity at low density.
View Article and Find Full Text PDFThe reactivity of different Co(2)(CO)(6)-acetylene complexes in the Pauson-Khand reaction is strongly dependent on the nature of the olefin. Theoretical calculations at both the DFT and ONIOM levels are concordant with experimental observations and suggest how the olefin-cobalt interactions in the complex could have a major effect on the relative reactivity of the olefins. This study rationalizes for the first time the experimentally observed reactivity differences of cyclohexene, cyclopentene, and norbornene.
View Article and Find Full Text PDF