Beam-column connections (joints) are one of the most critical elements which govern the overall seismic behavior of reinforced concrete (RC) structures. Especially in buildings designed according to previous generation codes, joints are often encountered with insufficient transverse reinforcement detailing, or even with no stirrups, leading to brittle failure. Therefore, externally bonded composite materials may be applied, due to the ease of application, low specific weight and corrosion-free properties.
View Article and Find Full Text PDFThe behaviour of reinforced concrete frames with masonry wall infills is influenced a lot by the stiffness and strength difference between the frame and the infill, causing early detrimental damage to the infill or to the critical concrete columns. The paper reports the results from shake table seismic tests on a full-scale reinforced concrete (RC) frame building with modified hollow clay block (orthoblock brick) infill walls, within INMASPOL SERA Horizon 2020 project. The building received innovative resilient protection using Polyurethane Flexible Joints (PUFJs) made of polyurethane resin (PU), applied at the frame-infill interface in different schemes.
View Article and Find Full Text PDFThis paper investigates the crucial design parameters for the prediction of the ultimate axial compressive deformation of reinforced concrete columns externally confined with fiber reinforced polymer (FRP) materials. Numerous test results of available columns with a square and rectangular section under cyclic axial loading were gathered in an advanced database. Herein, the database is enriched with necessary design parameters in order to address the unique tensile strain field variation of the FRP jacket.
View Article and Find Full Text PDFThis paper utilizes the advanced potential of pseudodynamic three-dimensional finite-element modeling to study the axial mechanical behavior of square and rectangular reinforced concrete columns, confined with fiber reinforced polymer (FRP) jackets and continuous composite ropes in seismic applications. The rigorous and versatile Riedel-Hiermaier-Thoma (RHT) material model for concrete is suitably calibrated/modified to reproduce the variable behavior of characteristic retrofitted columns with deficient internal steel reinforcement detailing, suffering nonuniform local concrete cracking and crushing or bulging and bar buckling. Similarly, the 3D FRP jacket or rope confinement models may account for damage distribution, local fracture initiation and different interfacial bonding conditions.
View Article and Find Full Text PDF