Understanding risks to terrestrial wildlife species from exposure to chemicals in the environment requires knowledge of how species make habitat decisions and how subsequent exposure events occur. Heterogeneity of chemical distribution and of habitat quality can influence exposure. Previous studies in birds have shown that individually based, spatially explicit models can be useful in predicting exposure and risk; however, studies investigating these influences in small mammals with limited ranges have been lacking.
View Article and Find Full Text PDFSpatially explicit wildlife exposure models have been developed to integrate chemical concentrations dispersed in space and time, heterogeneous habitats of varying qualities, and foraging behaviors of wildlife to give more realistic wildlife exposure estimates for ecological risk assessments. These models not only improve the realism of wildlife exposure estimates, but also increase the efficiency of remedial planning. However, despite being widely available, these models are rarely used in baseline (definitive) ecological risk assessments.
View Article and Find Full Text PDFUse of small arms during training is an important activity associated with the development and proficiency of soldiers. These weapons traditionally have used copper-jacketed lead projectiles; the copper facilitates the oxidation of the metallic lead resulting in more mobile oxides and carbonates. Consequently, many ranges at installations have high soil concentrations of lead.
View Article and Find Full Text PDF