We use laser flash photolysis and time-resolved Raman spectroscopy of CO-bound H93G myoglobin (Mb) mutants to study the influence of the proximal ligand on the CO rebinding kinetics. In H93G mutants, where the proximal linkage with the protein is eliminated and the heme can bind exogenous ligands (e.g.
View Article and Find Full Text PDFWe use laser flash photolysis and time-resolved Raman spectroscopy of CO-bound heme complexes to study proximal and distal influences on ligand rebinding kinetics. We report kinetics of CO rebinding to microperoxidase (MP) and 2-methylimidazole ligated Fe protoporphyrin IX in the 10 ns to 10 ms time window. We also report CO rebinding kinetics of MP in the 150 fs to 140 ps time window.
View Article and Find Full Text PDFWe have performed resonance Raman studies on ferrous NO- and CO-adducts of cytochrome P450(cam) and investigated the effects of diprotein complex formation with reduced putidaredoxin. We have found that the Fe-NO stretching mode of NO-P450(cam) can be resolved into two peaks at 551 and 561 cm(-1), and the binding of putidaredoxin increases the intensity of the high frequency component. Because the Fe-NO mode has been shown to be more sensitive to the nature of the heme proximal ligand than to the distal pocket environment, such a perturbation upon putidaredoxin binding is suggestive of changes in conformation or electronic structure that affect the proximal iron-cysteine bond.
View Article and Find Full Text PDF