This study demonstrates a silicon nanopillar metasurface coupled with localized surface plasmon resonance (LSPR) mediated by the presence of cephalexin antibiotics in solution for biosensing applications. A facile fabrication process was developed to create the metasurface on silicon wafers with a unique resonance signature. The resulting metasurface consists of periodic nanopillars approximately 180 nm in diameter, 210 nm deep, and with a controlled edge-to-edge separation of 200 nm.
View Article and Find Full Text PDFThe control of resonant metasurface for electromagnetically induced transparency (EIT) offers unprecedented opportunities to tailor lightwave coupling at the nanoscale leading to many important applications including slow light devices, optical filters, chemical and biosensors. However, the realization of EIT relies on the high degree of structural asymmetry by positional displacement of optically resonant structures, which usually lead to low quality factor (Q-factor) responses due to the light leakage from structural discontinuity from asymmetric displacements. In this work, we demonstrate a new pathway to create high quality EIT metasurface without any displacement of constituent resonator elements.
View Article and Find Full Text PDF