Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFBackground: Patients with schizophrenia have substantial comorbidity that contributes to reduced life expectancy of 10 to 20 years. Identifying modifiable comorbidities could improve rates of premature mortality. Conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore are enriched for potentially modifiable associations.
View Article and Find Full Text PDFThe value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results across studies. Here, we performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) and genetic data to understand which decision points may affect performance.
View Article and Find Full Text PDFPatients with schizophrenia have substantial comorbidity contributing to reduced life expectancy of 10-20 years. Identifying which comorbidities might be modifiable could improve rates of premature mortality in this population. We hypothesize that conditions that frequently co-occur but lack shared genetic risk with schizophrenia are more likely to be products of treatment, behavior, or environmental factors and therefore potentially modifiable.
View Article and Find Full Text PDFRare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e.
View Article and Find Full Text PDFSince nearly one-fifth of US adults have a psychiatric disorder, genetic counselors (GCs) will see many patients with these indications. However, GCs' reports of inadequate preparation and low confidence in providing care for patients with psychiatric disorders can limit their ability to meet patient's needs. How frequently psychiatric disorders present in GC sessions is currently unclear.
View Article and Find Full Text PDFAround 5% of the population is affected by a rare genetic disease, yet most endure years of uncertainty before receiving a genetic test. A common feature of genetic diseases is the presence of multiple rare phenotypes that often span organ systems. Here, we use diagnostic billing information from longitudinal clinical data in the electronic health records (EHRs) of 2,286 patients who received a chromosomal microarray test, and 9,144 matched controls, to build a model to predict who should receive a genetic test.
View Article and Find Full Text PDFBackground: Clinical laboratory (lab) tests are used in clinical practice to diagnose, treat, and monitor disease conditions. Test results are stored in electronic health records (EHRs), and a growing number of EHRs are linked to patient DNA, offering unprecedented opportunities to query relationships between genetic risk for complex disease and quantitative physiological measurements collected on large populations.
Methods: A total of 3075 quantitative lab tests were extracted from Vanderbilt University Medical Center's (VUMC) EHR system and cleaned for population-level analysis according to our QualityLab protocol.