Publications by authors named "Theodore L Esslinger"

Molecular data provide unprecedented insight into diversity of lichenized fungi, although morphologically cryptic species-level lineages circumscribed from sequence data often remain undescribed even in well-studies groups. Using diagnostic characters from DNA sequence data and support from the multispecies coalescent model, we formally describe a total of eleven new species and resurrect two others in the hyperdiverse lichen-forming fungal family Parmeliaceae. These include: four in the genus Melanelixia - M.

View Article and Find Full Text PDF

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi.

View Article and Find Full Text PDF

Microbial symbionts are instrumental to the ecological and long-term evolutionary success of their hosts, and the central role of symbiotic interactions is increasingly recognized across the vast majority of life. Lichens provide an iconic group for investigating patterns in species interactions; however, relationships among lichen symbionts are often masked by uncertain species boundaries or an inability to reliably identify symbionts. The species-rich lichen-forming fungal family Parmeliaceae provides a diverse group for assessing patterns of interactions of algal symbionts, and our study addresses patterns of lichen symbiont interactions at the largest geographic and taxonomic scales attempted to date.

View Article and Find Full Text PDF

Brown parmelioid lichens comprise a number of distinct genera in one of the most species-rich families of lichen-forming fungi, Parmeliaceae (Ascomycota). In spite of their superficial similarity, a number of studies of brown parmelioids have provided important insight into diversification in lichen-forming fungi with cosmopolitan distributions. In this study we assess species diversity, biogeography and diversification of the genus Montanelia, which includes alpine to temperate saxicolous species.

View Article and Find Full Text PDF

Premise Of The Study: In spite of the recent advances in generic and species circumscriptions and in recognizing species diversity in lichen-forming fungi, the timing of speciation and the factors that promote diversification in lichens remain largely unexplored. We used brown parmelioids as a model to assess the timing of divergence and explore the impact of geological and climatic events on lineage divergence and diversification in lichenized fungi. Additionally, to clarify the phylogenetic position of the species currently placed in Melanelia disjuncta group, we evaluated the taxonomic status and phylogenetic relationships within Parmeliaceae.

View Article and Find Full Text PDF

Premise Of The Study: Diversification in neotropical regions has been attributed to both Tertiary geological events and Pleistocene climatic fluctuations. However, the timing and processes driving speciation in these regions remain unexplored in many important groups. Here, we address the timing of diversification in the neotropical lichenized fungal genus Oropogon (Ascomycota) and assess traditional species boundaries.

View Article and Find Full Text PDF

Accurate species circumscriptions are central for many biological disciplines and have critical implications for ecological and conservation studies. An increasing body of evidence suggests that in some cases traditional morphology-based taxonomy have underestimated diversity in lichen-forming fungi. Therefore, genetic data play an increasing role for recognizing distinct lineages of lichenized fungi that it would otherwise be improbable to recognize using classical phenotypic characters.

View Article and Find Full Text PDF

Background: Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere.

View Article and Find Full Text PDF

A phylogenetic and taxonomic study of the Physconia distorta morphotype complex was undertaken using ITS nu-rDNA as a molecular marker to re-evaluate this group. The analysis incorporated several samples of European P. distorta and also of American and European populations, recently named as P.

View Article and Find Full Text PDF

This paper continues a revision of generic concepts in the parmelioid lichens using molecular data in order to reach a consensus among lichenologists over which segregates proposed over the last two decades should be accepted. Here we employ data from three gene portions to provide a basis for a revised generic concept of the brown parmelioid lichens hitherto classified in Melanelia. The phylogeny was studied using a Bayesian analysis of a combined data set of nuclear ITS, LSU rDNA and mitochondrial SSU rDNA sequences.

View Article and Find Full Text PDF

A Bayesian analysis of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences was used to infer phylogenetic relationships of 14 Physconia species. The analysis supports the monophyly of the genus. Three well supported clades can be distinguished within Physconia: the series griseae, venustae and pulverulentae.

View Article and Find Full Text PDF