Though opening of the start site (+1) region of promoter DNA is required for transcription by RNA polymerase (RNAP), surprisingly little is known about how and when this occurs in the mechanism. Early events at the lambdaP(R) promoter load this region of duplex DNA into the active site cleft of Escherichia coli RNAP, forming the closed, permanganate-unreactive intermediate I(1). Conversion to the subsequent intermediate I(2) overcomes a large enthalpic barrier.
View Article and Find Full Text PDFTranscription by all RNA polymerases (RNAPs) requires a series of large-scale conformational changes to form the transcriptionally competent open complex RP(o). At the lambdaP(R) promoter, Escherichia coli sigma(70) RNAP first forms a wrapped, closed 100 bp complex I(1). The subsequent step opens the entire DNA bubble, creating the relatively unstable (open) complex I(2).
View Article and Find Full Text PDFBacterial RNA polymerase and a "sigma" transcription factor form an initiation-competent "open" complex at a promoter by disruption of about 14 base pairs. Strand separation is likely initiated at the highly conserved -11 A-T base pair. Amino acids in conserved region 2.
View Article and Find Full Text PDF