Purpose: Improved resolution of molecular diagnostic technologies enabled detection of smaller sized exonic level copy-number variants (CNVs). The contribution of CNVs to autosomal recessive (AR) conditions may be better recognized using a large clinical cohort.
Methods: We retrospectively investigated the CNVs' contribution to AR conditions in cases subjected to chromosomal microarray analysis (CMA, N = ~70,000) and/or clinical exome sequencing (ES, N = ~12,000) at Baylor Genetics; most had pediatric onset neurodevelopmental disorders.
Metastasis is responsible for 90% of human cancer mortality, yet it remains a challenge to model human cancer metastasis in vivo. Here we describe mouse models of high-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), the most common and deadliest human ovarian cancer type. Mice genetically engineered to harbor Dicer1 and Pten inactivation and mutant p53 robustly replicate the peritoneal metastases of human HGSC with complete penetrance.
View Article and Find Full Text PDFBackground: Exome sequencing (ES) has been successfully applied in clinical detection of single nucleotide variants (SNVs) and small indels. However, identification of copy number variants (CNVs) using ES data remains challenging. The purpose of this study is to understand the contribution of CNVs and copy neutral runs of homozygosity (ROH) in molecular diagnosis of patients referred for ES.
View Article and Find Full Text PDFPurpose: To provide a validated method to confidently identify exon-containing copy-number variants (CNVs), with a low false discovery rate (FDR), in targeted sequencing data from a clinical laboratory with particular focus on single-exon CNVs.
Methods: DNA sequence coverage data are normalized within each sample and subsequently exonic CNVs are identified in a batch of samples, when the target log ratio of the sample to the batch median exceeds defined thresholds. The quality of exonic CNV calls is assessed by C-scores (Z-like scores) using thresholds derived from gold standard samples and simulation studies.
Importance: While congenital malformations and genetic diseases are a leading cause of early infant death, to our knowledge, the contribution of single-gene disorders in this group is undetermined.
Objective: To determine the diagnostic yield and use of clinical exome sequencing in critically ill infants.
Design, Setting, And Participants: Clinical exome sequencing was performed for 278 unrelated infants within the first 100 days of life who were admitted to Texas Children's Hospital in Houston, Texas, during a 5-year period between December 2011 and January 2017.
Background: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery.
Methods: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e.
We developed an algorithm, HMZDelFinder, that uses whole exome sequencing (WES) data to identify rare and intragenic homozygous and hemizygous (HMZ) deletions that may represent complete loss-of-function of the indicated gene. HMZDelFinder was applied to 4866 samples in the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) cohort and detected 773 HMZ deletion calls (567 homozygous or 206 hemizygous) with an estimated sensitivity of 86.5% (82% for single-exonic and 88% for multi-exonic calls) and precision of 78% (53% single-exonic and 96% for multi-exonic calls).
View Article and Find Full Text PDFATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.
View Article and Find Full Text PDFMutations in CRIPT encoding cysteine-rich PDZ domain-binding protein are rare, and to date have been reported in only two patients with autosomal recessive primordial dwarfism and distinctive facies. Here, we describe a female with biallelic mutations in CRIPT presenting with postnatal growth retardation, global developmental delay, and dysmorphic features including frontal bossing, high forehead, and sparse hair and eyebrows. Additional clinical features included high myopia, admixed hyper- and hypopigmented macules primarily on the face, arms, and legs, and syndactyly of 4-5 toes bilaterally.
View Article and Find Full Text PDFThe underlying genetic etiology of rhabdomyolysis remains elusive in a significant fraction of individuals presenting with recurrent metabolic crises and muscle weakness. Using exome sequencing, we identified bi-allelic mutations in TANGO2 encoding transport and Golgi organization 2 homolog (Drosophila) in 12 subjects with episodic rhabdomyolysis, hypoglycemia, hyperammonemia, and susceptibility to life-threatening cardiac tachyarrhythmias. A recurrent homozygous c.
View Article and Find Full Text PDFImportance: Clinical whole-exome sequencing is increasingly used for diagnostic evaluation of patients with suspected genetic disorders.
Objective: To perform clinical whole-exome sequencing and report (1) the rate of molecular diagnosis among phenotypic groups, (2) the spectrum of genetic alterations contributing to disease, and (3) the prevalence of medically actionable incidental findings such as FBN1 mutations causing Marfan syndrome.
Design, Setting, And Patients: Observational study of 2000 consecutive patients with clinical whole-exome sequencing analyzed between June 2012 and August 2014.
Motivation: Sufficiently powered case-control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds.
View Article and Find Full Text PDFThe existence of pleiotropy in disorders with multi-organ involvement can suggest therapeutic targets that could ameliorate overall disease severity. Here we assessed pleiotropy of modifier genes in cystic fibrosis (CF). CF, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, affects the lungs, liver, pancreas and intestines.
View Article and Find Full Text PDFBackground: Reading disability (RD) is a common neurodevelopmental disorder with genetic basis established in families segregating "pure" dyslexia. RD commonly occurs in neurodevelopmental disorders including Rolandic Epilepsy (RE), a complex genetic disorder. We performed genomewide linkage analysis of RD in RE families, testing the hypotheses that RD in RE families is genetically heterogenenous to pure dyslexia, and shares genetic influences with other sub-phenotypes of RE.
View Article and Find Full Text PDFVariants associated with meconium ileus in cystic fibrosis were identified in 3,763 affected individuals by genome-wide association study (GWAS). Five SNPs at two loci near SLC6A14 at Xq23-24 (minimum P = 1.28 × 10(-12) at rs3788766) and SLC26A9 at 1q32.
View Article and Find Full Text PDFIn this study, we verified the accuracy of two array methods--methylated DNA immunoprecipitation coupled with CpG island microarrays (MeDIP-CGI-arrays) and sodium bisulfite conversion based microarrays (BC-arrays)--in predicting regional methylation levels as measured by pyrosequencing of bisulfite converted DNA (BC-pyrosequencing). To test the accuracy of these methods we used the Agilent Human CpG island and the Illumina HumanMethylation27 microarrays respectively, and compared microarray outputs to the data from targeted BC-pyrosequencing assays from several genomic regions of corresponding samples. We observed relatively high correlation with BC-pyrosequencing data for both array platforms, R = 0.
View Article and Find Full Text PDFBackground: We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability.
View Article and Find Full Text PDFInvestigators performing genetic association studies grapple with how to measure strength of association evidence, choose sample size, and adjust for multiple testing. We apply the evidential paradigm (EP) to genetic association studies, highlighting its strengths. The EP uses likelihood ratios (LRs), as opposed to P-values or Bayes' factors, to measure strength of association evidence.
View Article and Find Full Text PDFRolandic epilepsy (RE) is the most common human epilepsy, affecting children between 3 and 12 years of age, boys more often than girls (3:2). Focal sharp waves in the centrotemporal area define the electroencephalographic (EEG) trait for the syndrome, are a feature of several related childhood epilepsies and are frequently observed in common developmental disorders (eg, speech dyspraxia, attention deficit hyperactivity disorder and developmental coordination disorder). Here we report the first genome-wide linkage scan in RE for the EEG trait, centrotemporal sharp waves (CTS), with genome-wide linkage of CTS to 11p13 (HLOD 4.
View Article and Find Full Text PDFUsing a multistage genetic association approach comprising 7,480 affected individuals and 7,779 controls, we identified markers in chromosomal region 8q24 associated with colorectal cancer. In stage 1, we genotyped 99,632 SNPs in 1,257 affected individuals and 1,336 controls from Ontario. In stages 2-4, we performed serial replication studies using 4,024 affected individuals and 4,042 controls from Seattle, Newfoundland and Scotland.
View Article and Find Full Text PDF