Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes.
Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer.
Design, Setting, And Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials.
Although increasingly recognized as critical to genomic research, genomic data sharing is hindered by an absence of standards regarding timing, patient privacy, use agreement standards, and data characterization and quality. Only after months of identifying, permissioning for use, committing to terms restricting use and sharing, downloading, and assessing quality, is it possible to know whether or not a dataset can be used. In this paper, we evaluate the barriers to data sharing based on the Treehouse experience and offer recommendations for use agreement standards, data characterization and metadata standardization to enhance data sharing and outcomes for all pediatric cancer patients.
View Article and Find Full Text PDFBioinformatics
November 2019
While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression.
View Article and Find Full Text PDFVast amounts of molecular data are being collected on tumor samples, which provide unique opportunities for discovering trends within and between cancer subtypes. Such cross-cancer analyses require computational methods that enable intuitive and interactive browsing of thousands of samples based on their molecular similarity. We created a portal called TumorMap to assist in exploration and statistical interrogation of high-dimensional complex "omics" data in an interactive and easily interpretable way.
View Article and Find Full Text PDFHigh-throughput genomic data that measures RNA expression, DNA copy number, mutation status, and protein levels provide us with insights into the molecular pathway structure of cancer. Genomic lesions (amplifications, deletions, mutations) and epigenetic modifications disrupt biochemical cellular pathways. Although the number of possible lesions is vast, different genomic alterations may result in concordant expression and pathway activities, producing common tumor subtypes that share similar phenotypic outcomes.
View Article and Find Full Text PDFTo correlate the variable clinical features of oestrogen-receptor-positive breast cancer with somatic alterations, we studied pretreatment tumour biopsies accrued from patients in two studies of neoadjuvant aromatase inhibitor therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to haematopoietic disorders. Mutant MAP3K1 was associated with luminal A status, low-grade histology and low proliferation rates, whereas mutant TP53 was associated with the opposite pattern.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses.
View Article and Find Full Text PDF