Mutations in the epigenetic regulator Additional Sex Combs-Like 1 (ASXL1) are frequently observed in chronic neutrophilic leukemia (CNL). CNL is a myeloproliferative neoplasm (MPN) driven by activating mutations in the Colony Stimulating Factor 3 Receptor (CSF3R), which cause excessive neutrophil production. Despite the high rates of co-occurrence, the interplay between ASXL1 and CSF3R mutations in hematopoiesis and leukemia remains poorly understood.
View Article and Find Full Text PDFDNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap).
View Article and Find Full Text PDFIntroduction: CMML is a rare neoplasm with overlapping myelodysplastic and myeloproliferative features whose only potential cure is allogeneic hematopoietic cell transplantation (allo-HCT).
Methods: This retrospective study examined 27 CMML patients with high-risk clinical features who underwent first allo-HCT at our institution between 2004 and 2022.
Results: Nineteen patients were diagnosed with the proliferative subtype (CMML-MPN) and 8 with the dysplastic subtype (CMML-MDS).
Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detection of aberrant transcription factor activity is important to understand disease pathogenesis. We have developed Priori, a method to predict transcription factor activity from RNA sequencing data.
View Article and Find Full Text PDFA multitude of blood-based multicancer early detection (MCED) tests assessing cancer-related alterations in circulating genomic analytes and other associated signatures are currently being developed with the potential to disrupt current single-organ screening paradigms. Pathways for clinical implementation of these novel MCED tests have not been delineated, particularly for the patients with signal positive results requiring additional confirmatory testing. In this overview, we highlight early results from prospective clinical studies testing the efficacy of genomic MCED tests in cohorts of patients without known cancer diagnoses.
View Article and Find Full Text PDFAlthough the majority of patients with chronic myeloid leukemia (CML) enjoy an excellent prognosis tyrosine kinase inhibitor (TKI) therapy, resistance remains a significant clinical problem. Resistance can arise from mutations in the kinase domain of ABL preventing drug binding, or due to ill-defined kinase-independent mechanisms. In this case report, we describe the case of a 27-year-old woman with a long-standing history of chronic phase (CP) CML who developed kinase-independent resistance with mutations in and .
View Article and Find Full Text PDFSingle-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats.
View Article and Find Full Text PDFDNA methylation is a key component of the mammalian epigenome, playing a regulatory role in development, disease, and other processes. Robust, high-throughput single-cell DNA methylation assays are now possible (sciMET); however, the genome-wide nature of DNA methylation results in a high sequencing burden per cell. Here, we leverage target enrichment with sciMET to capture sufficient information per cell for cell type assignment using substantially fewer sequence reads (sciMET-cap).
View Article and Find Full Text PDFUnlabelled: Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML.
View Article and Find Full Text PDFMutations in the gene Additional Sex-Combs Like 1 (ASXL1) are recurrent in myeloid malignancies as well as the pre-malignant condition clonal hematopoiesis, where they are universally associated with poor prognosis. However, the role of ASXL1 in myeloid lineage maturation is incompletely described. To define the role of ASXL1 in myelopoiesis, we employed single cell RNA sequencing and a murine model of hematopoietic-specific Asxl1 deletion.
View Article and Find Full Text PDFGenome-wide mapping of histone modifications is critical to understanding transcriptional regulation. CUT&Tag is a new method for profiling histone modifications, offering improved sensitivity and decreased cost compared with ChIP-seq. Here, we present GoPeaks, a peak calling method specifically designed for histone modification CUT&Tag data.
View Article and Find Full Text PDFResponses to kinase-inhibitor therapy in AML are frequently short-lived due to the rapid development of resistance, limiting the clinical efficacy. Combination therapy may improve initial therapeutic responses by targeting pathways used by leukemia cells to escape monotherapy. Here we report that combined inhibition of KIT and lysine-specific demethylase 1 (LSD1) produces synergistic cell death in KIT-mutant AML cell lines and primary patient samples.
View Article and Find Full Text PDFColony stimulating factor 3 receptor (CSF3R) mutations lead to JAK pathway activation and are the molecular hallmark of chronic neutrophilic leukemia (CNL). Approximately half of patients with CNL also have mutations in SET binding protein 1 (SETBP1). In this study, we developed models of SETBP1-mutated leukemia to understand the role that SETBP1 plays in CNL.
View Article and Find Full Text PDFQuantitative PCR-based strategies are typically effective for monitoring BCR-ABL1 transcript levels in chronic myeloid leukemia (CML). Additionally, some patients treated with tyrosine kinase inhibitors can experience long-term treatment-free remission after discontinuation of the inhibitor. However, this outcome hinges on effectively monitoring the patient's response to therapy.
View Article and Find Full Text PDFLipocalin 2 (LCN2) is a pleiotropic molecule that is induced in the central nervous system (CNS) in several acute and chronic pathologies. The acute induction of LCN2 evolved as a beneficial process, aimed at combating bacterial infection through the sequestration of iron from pathogens, while the role of LCN2 during chronic, non-infectious disease remains unclear, and recent studies suggest that LCN2 is neurotoxic. However, whether LCN2 is sufficient to induce behavioral and cognitive alterations remains unclear.
View Article and Find Full Text PDFMutations in SET-binding protein 1 (SETBP1) are associated with poor outcomes in myeloid leukemias. In the Ras-driven leukemia, juvenile myelomonocytic leukemia, SETBP1 mutations are enriched in relapsed disease. While some mechanisms for SETBP1-driven oncogenesis have been established, it remains unclear how SETBP1 specifically modulates the biology of Ras-driven leukemias.
View Article and Find Full Text PDFThe characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients.
View Article and Find Full Text PDFBackground: Chronic myeloid leukemia (CML) and chronic neutrophilic leukemia (CNL) are two myeloproliferative neoplasms with mutually exclusive diagnostic criteria. A hallmark of CML is the Philadelphia chromosome (Ph), which results in a BCR-ABL1 fusion gene and constitutive tyrosine kinase activity. CNL is a Ph-negative neoplasm and is defined in part by the presence of CSF3R mutations, which drive constative JAK/STAT signaling.
View Article and Find Full Text PDF