The nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPR), between tissues. However, these studies largely ignored nonneuronal cells of the nervous system. Here, we found that UPR activation in four astrocyte-like glial cells in the nematode, , can promote protein homeostasis by alleviating protein aggregation in neurons.
View Article and Find Full Text PDFThe nervous system plays a critical role in maintaining whole-organism homeostasis; neurons experiencing mitochondrial stress can coordinate the induction of protective cellular pathways, such as the mitochondrial unfolded protein response (UPR), between tissues. However, these studies largely ignored non-neuronal cells of the nervous system. Here, we found that UPR activation in four, astrocyte-like glial cells in the nematode, , can promote protein homeostasis by alleviating protein aggregation in neurons.
View Article and Find Full Text PDFPLOS Glob Public Health
June 2023
In this paper, we examine the cost effectiveness of investment in personal protective equipment (PPE) for protecting health care workers (HCWs) against two infectious diseases: Ebola virus and methicillin-resistant Staphylococcus aureus (MRSA). This builds on similar work published for COVID-19 in 2020. We developed two separate decision-analytic models using a payer perspective to compare the costs and effects of multiple PPE use scenarios for protection of HCW against Ebola and MRSA.
View Article and Find Full Text PDFThe deleterious potential to generate oxidative stress is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and consequences of this remain unknown. Here, we performed a genetic screen in targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity.
View Article and Find Full Text PDFOrganisms are often exposed to fluctuating environments and changes in intracellular homeostasis, which can have detrimental effects on their proteome and physiology. Thus, organisms have evolved targeted and specific stress responses dedicated to repair damage and maintain homeostasis. These mechanisms include the unfolded protein response of the endoplasmic reticulum (UPR), the unfolded protein response of the mitochondria (UPR), the heat shock response (HSR), and the oxidative stress response (OxSR).
View Article and Find Full Text PDFMulticellular organisms are complex biological systems, composed of specialized tissues that require coordination of the metabolic and fitness state of each component. In the cells composing the tissues, one central organelle is the mitochondrion, a compartment essential for many energetic and fundamental biological processes. Beyond serving these functions, mitochondria have emerged as signaling hubs in biological systems, capable of inducing changes to the cell they are in, to cells in distal tissues through secreted factors, and to overall animal physiology.
View Article and Find Full Text PDF