The conversion of CO into liquid fuels, using only sunlight and water, offers a promising path to carbon neutrality. An outstanding challenge is to achieve high efficiency and product selectivity. Here, we introduce a wireless photocatalytic architecture for conversion of CO and water into methanol and oxygen.
View Article and Find Full Text PDFCoherent backscattering (CBS) arises from complex interactions of a coherent beam with randomly positioned particles, which has been typically studied in media with large numbers of scatterers and high opacity. We develop a first-principles scattering model for scalar waves to study the CBS cone formation in finite-sized and sparse random media with specific geometries. The current study provides insights into the effects of density, volume size, and other relevant parameters on the angular characteristics of the CBS cone emerging from sparse and bounded random media for various types of illumination, with results consistent with well-known CBS studies which are typically based on samples with much larger number of scatterers and higher opacity.
View Article and Find Full Text PDFSemiconductor photoconductive switches are useful and versatile emitters of terahertz (THz) radiation with a broad range of applications in THz imaging and time-domain spectroscopy. One fundamental challenge for achieving efficient ultrafast switching, however, is the relatively long carrier lifetime in most common semiconductors. To obtain picosecond ultrafast pulses, especially when coupled with waveguides/transmission lines, semiconductors are typically engineered with high defect density to reduce the carrier lifetimes, which in turn lowers the overall power output of the photoconductive switches.
View Article and Find Full Text PDFImage security is becoming an increasingly important issue due to advances in deep learning based image manipulations, such as deep image inpainting and deepfakes. There has been considerable work to date on detecting such image manipulations using improved algorithms, with little attention paid to the possible role that hardware advances may have for improving security. We propose to use a focal stack camera as a novel secure imaging device, to the best of our knowledge, that facilitates localizing modified regions in manipulated images.
View Article and Find Full Text PDFThe ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new approaches to the control of optical fields. In this article we present the design of novel switchable metasurfaces that enable the control of the nonclassical two-photon quantum interference.
View Article and Find Full Text PDFRecent years have seen the rapid growth of new approaches to optical imaging, with an emphasis on extracting three-dimensional (3D) information from what is normally a two-dimensional (2D) image capture. Perhaps most importantly, the rise of computational imaging enables both new physical layouts of optical components and new algorithms to be implemented. This paper concerns the convergence of two advances: the development of a transparent focal stack imaging system using graphene photodetector arrays, and the rapid expansion of the capabilities of machine learning including the development of powerful neural networks.
View Article and Find Full Text PDFTerahertz circular dichroism (TCD) offers multifaceted spectroscopic capabilities for understanding the mesoscale chiral architecture and low-energy vibrations of macromolecules in (bio)materials. However, the lack of dynamic polarization modulators comparable to polarization optics for other parts of the electromagnetic spectrum is impeding the proliferation of TCD spectroscopy. Here we show that tunable optical elements fabricated from patterned plasmonic sheets with periodic kirigami cuts make possible the polarization modulation of terahertz radiation under application of mechanical strain.
View Article and Find Full Text PDFThe symmetry of metallic nanocolloids, typically envisaged as simple geometrical shapes, is rarely questioned. However, the symmetry considerations are so essential for understanding their electronic structure, optical properties, and biological effects that it is important to reexamine these foundational assumptions for nanocolloids. Gold nanorods (AuNRs) are generally presumed to have nearly perfect geometry of a cylinder and therefore are centrosymmetric.
View Article and Find Full Text PDFA simple imaging system, together with complex semidefinite programming, is used to generate the transmission matrix (TM) of a multimode fiber. Once the TM is acquired, we can modulate the phase of the input signal to induce strong mode interference at the fiber output. The optical design does not contain a reference arm, no internal reference signal is used, and no interferometric measurements are required.
View Article and Find Full Text PDFComplex Semi-Definite Programming (SDP) is introduced as a novel approach to phase retrieval enabled control of monochromatic light transmission through highly scattering media. In a simple optical setup, a spatial light modulator is used to generate a random sequence of phase-modulated wavefronts, and the resulting intensity speckle patterns in the transmitted light are acquired on a camera. The SDP algorithm allows computation of the complex transmission matrix of the system from this sequence of intensity-only measurements, without need for a reference beam.
View Article and Find Full Text PDFA systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering.
View Article and Find Full Text PDFThe ultrafast dynamics of hot carriers in graphene are key to both understanding of fundamental carrier-carrier interactions and carrier-phonon relaxation processes in two-dimensional materials, and understanding of the physics underlying novel high-speed electronic and optoelectronic devices. Many recent experiments on hot carriers using terahertz spectroscopy and related techniques have interpreted the variety of observed signals within phenomenological frameworks, and sometimes invoke extrinsic effects such as disorder. Here, we present an integrated experimental and theoretical programme, using ultrafast time-resolved terahertz spectroscopy combined with microscopic modelling, to systematically investigate the hot-carrier dynamics in a wide array of graphene samples having varying amounts of disorder and with either high or low doping levels.
View Article and Find Full Text PDFWe consider the scattering of entangled two-photon states from collections of small particles. We also study the related Mie problem of scattering from a sphere. In both cases, we calculate the entropy of entanglement and investigate the influence of the entanglement of the incident field on the entanglement of the scattered field.
View Article and Find Full Text PDFWhile metal is the most common conducting constituent element in the fabrication of metamaterials, graphene provides another useful building block, that is, a truly two-dimensional conducting sheet whose conductivity can be controlled by doping. Here we report the experimental realization of a multilayer structure of alternating graphene and Al2O3 layers, a structure similar to the metal-dielectric multilayers commonly used in creating visible wavelength hyperbolic metamaterials. Chemical vapour deposited graphene rather than exfoliated or epitaxial graphene is used, because layer transfer methods are easily applied in fabrication.
View Article and Find Full Text PDFIn van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers.
View Article and Find Full Text PDFThe photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graphene due to its electron-hole symmetry. Here, we report the observation of a strong lateral photo-Dember effect induced by nonequilibrium hot carrier dynamics when exciting a graphene-metal interface with a femtosecond laser.
View Article and Find Full Text PDFThe ability to detect light over a broad spectral range is central to several technological applications in imaging, sensing, spectroscopy and communication. Graphene is a promising candidate material for ultra-broadband photodetectors, as its absorption spectrum covers the entire ultraviolet to far-infrared range. However, the responsivity of graphene-based photodetectors has so far been limited to tens of mA W(-1) (refs 5-10) due to the small optical absorption of a monolayer of carbon atoms.
View Article and Find Full Text PDFPhotoexcited carrier relaxation is a recurring topic in understanding the transient conductivity dynamics of graphene-based devices. For atomically thin graphene oxide (GO), a simple free-carrier Drude response is expected to govern the terahertz (THz) conductivity dynamics--same dynamics observed in conventional CVD-grown graphene. However, to date, no experimental testimony has been provided on the origin of photoinduced conductivity increase in GO.
View Article and Find Full Text PDFBackground: Growth factor receptors such as epidermal growth factor receptor 1 and human epidermal growth receptor 2 (HER2) are overexpressed in certain cancer cells. Antibodies against these receptors (eg. cetuximab and transtuzumab [Herceptin]) have shown therapeutic value in cancer treatment.
View Article and Find Full Text PDFMicrofluidic droplets formed in emulsions are used in a variety of analytical techniques and hold great potential for future scientific and commercial applications. Our experiments merge quantitative quality engineering methods into the microdroplet field. We present a unique microdroplet generation and consistency monitoring system with laser optics excitation and detection.
View Article and Find Full Text PDFHigh-resolution ultrasound imaging requires quality sensors with wide bandwidth and high sensitivity, as shown in a wide range of applications, including intravascular imaging of cardiovascular diseases. However, piezoelectric technology, the current dominant approach for hydrophone fabrication, has encountered many technical limitations in the high-frequency range. Using optical techniques for the detection of high-frequency ultrasound signals has attracted much recent attention.
View Article and Find Full Text PDFReal-time measurement of specific biomolecular interactions is critical to many areas of biological research. A number of label-free techniques for directly monitoring biomolecular binding have been developed, but it is still challenging to measure the binding kinetics of very small molecules, to detect low concentrations of analyte molecules, or to detect low affinity interactions. In this study, we report the development of a highly sensitive photonic crystal biosensor for label-free, real-time biomolecular binding analysis.
View Article and Find Full Text PDFThe substrate-induced charge-density profile in carbon face epitaxial graphene is determined using nondegenerate ultrafast midinfrared pump-probe spectroscopy. Distinct zero crossings in the differential transmission spectra are used to identify the Fermi levels of layers within the multilayer stack. Probing within the transmission window of the SiC substrate, we find the Fermi levels of the first four heavily doped layers to be, respectively, 360, 215, 140, and 93 meV above the Dirac point.
View Article and Find Full Text PDFWe report generation of ballistic electric currents in unbiased epitaxial graphene at 300 K via quantum interference between phase-controlled cross-polarized fundamental and second harmonic 220 fs pulses. The transient currents are detected via the emitted terahertz radiation. Because of graphene's special structure symmetry, the injected current direction can be well controlled by the polarization of the pump beam in epitaxial graphene.
View Article and Find Full Text PDF