Publications by authors named "Theodore Arapoglou"

Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants.

View Article and Find Full Text PDF
Article Synopsis
  • Large-scale whole-genome sequencing studies allow researchers to examine associations between rare noncoding variants and complex diseases, although current methods struggle with the noncoding genome analysis.
  • The STAARpipeline framework offers a comprehensive solution for detecting noncoding rare variant associations through various analytical approaches, including gene-centric and non-gene-centric analyses that utilize functional annotations.
  • The effectiveness of STAARpipeline is demonstrated through its application in identifying significant noncoding RV sets linked to lipid traits in over 21,000 samples, with successful replication in an additional group, and further analysis of other traits.
View Article and Find Full Text PDF

Attempts to identify and prioritize functional DNA elements in coding and non-coding regions, particularly through use of in silico functional annotation data, continue to increase in popularity. However, specific functional roles can vary widely from one variant to another, making it challenging to summarize different aspects of variant function with a one-dimensional rating. Here we propose multi-dimensional annotation-class integrative estimation (MACIE), an unsupervised multivariate mixed-model framework capable of integrating annotations of diverse origin to assess multi-dimensional functional roles for both coding and non-coding variants.

View Article and Find Full Text PDF