Publications by authors named "Theodore A G Smith"

The interaction of acute myeloid leukaemic (AML) blasts with the bone marrow (BM) microenvironment is a major determinant governing disease progression and resistance to treatment. The constitutive expression of E-selectin in the vascular compartment of BM, a key endothelial cell factor, directly mediates chemoresistance via E-selectin ligand/receptors. Despite the success of hypomethylating agent (HMA)-containing regimens to induce remissions in older AML patients, the development of primary or secondary resistance is common.

View Article and Find Full Text PDF

Sequestration of adenovirus serotype 5 (Ad5) in liver restricts its use for gene delivery to other target sites in vivo. To date, no studies have systematically assessed the impact of genetic capsid modifications on in vivo tropism in rats, an important preclinical model for many disease types. We evaluated a panel of Ad5 vectors with capsid mutations or pseudotyped with the short fiber from serotype 41 (Ad41s) for infectivity in Wistar Kyoto rats in vitro and systemically in vivo.

View Article and Find Full Text PDF

Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice.

View Article and Find Full Text PDF

Adenoviral vectors used in gene therapy are predominantly derived from adenovirus serotype 5 (Ad5), which infects a broad range of cells. Ad5 cell entry involves interactions with the coxsackie-adenovirus receptor (CAR) and integrins. To assess these receptors in vivo, we mutated amino acid residues in fiber and penton that are involved in receptor interaction and showed that CAR and integrins play a minor role in hepatic transduction but that integrins can influence gene delivery to other tissues.

View Article and Find Full Text PDF