Publications by authors named "Theodore A Craig"

Background: Novel human parathyroid hormone (hPTH) peptides of unknown biological activity have recently been identified in the serum of subjects with normal renal function, chronic renal failure, and end-stage renal disease through the application of liquid chromatography-high resolution mass spectrometry.

Purpose: of experiments: To determine the bioactivity of these peptides, we synthesized hPTH28-84, hPTH38-84, and hPTH45-84 peptides by solid phase peptide synthesis and tested their bioactivity in MC3T3-E1 mouse osteoblasts, either individually or together with the native hormone, hPTH1-84, by assessing the accumulation of 3´,5´-cyclic adenosine monophosphate (cAMP) and the induction of alkaline phosphatase activity.

Results: Increasing doses of hPTH1-84 (1-100 nM) increased the accumulation of cAMP and alkaline phosphatase activity in osteoblasts.

View Article and Find Full Text PDF

The translesion synthesis (TLS) DNA polymerases Rev1 and Polζ function together in DNA lesion bypass during DNA replication, acting as nucleotide inserter and extender polymerases, respectively. While the structural characterization of the Saccharomyces cerevisiae Polζ in its DNA-bound state has illuminated how this enzyme synthesizes DNA, a mechanistic understanding of TLS also requires probing conformational changes associated with DNA- and Rev1 binding. Here, we used single-particle cryo-electron microscopy to determine the structure of the apo Polζ holoenzyme.

View Article and Find Full Text PDF

Diseases or conditions where diaphragm muscle (DIAm) function is impaired, including chronic obstructive pulmonary disease, cachexia, asthma, and aging, are associated with an increased risk of pulmonary symptoms, longer duration of hospitalizations, and increasing requirements for mechanical ventilation. Vitamin D deficiency is associated with proximal muscle weakness that resolves following therapy with vitamin D. Skeletal muscle expresses the vitamin D receptor (VDR), which responds to the active form of vitamin D, 1,25-dihydroxyvitamin D by altering gene expression in target cells.

View Article and Find Full Text PDF

Background: To understand the underlying mechanisms of cardiac dysfunction in cancer, we examined cardiac function, protein synthesis, mitochondrial function and gene expression in a model of heart failure in mice injected with Lewis lung carcinoma (LLC1) cells.

Experimental Design: Seven week-old C57BL/J6 male and female mice were injected with LLC1 cells or vehicle. Cardiac ejection fraction, ventricular wall and septal thickness were reduced in male, but not female, tumor-bearing mice compared to vehicle-injected control mice.

View Article and Find Full Text PDF

Patients with non-small cell lung cancer (NSLC) often develop skeletal complications and fractures. To understand mechanisms of bone loss, we developed a murine model of non-metastatic NSLC. Decreased bone mineral density, trabecular thickness and mineralization, without an increase in bone resorption, were observed in vivo in mice injected with Lewis lung adenocarcinoma (LLC1) cells in the absence of tumor cell metastases.

View Article and Find Full Text PDF

Cancer cachexia is associated with muscle weakness and atrophy. We investigated whether 1α,25-dihydroxyvitamin D (1α,25(OH)D), which has previously been shown to increase skeletal myoblast oxygen consumption rate, could reverse the deleterious effects of tumor cell conditioned medium on myoblast function. Conditioned medium from Lewis lung carcinoma (LLC1) cells inhibits oxygen consumption, increases mitochondrial fragmentation, inhibits pyruvate dehydrogenase activity, and enhances proteasomal activity in human skeletal muscle myoblasts.

View Article and Find Full Text PDF

Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca-binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca but detaches from DRE under Ca stimulation, allowing gene expression. The Ca binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM.

View Article and Find Full Text PDF

Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells.

View Article and Find Full Text PDF

The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1(fl/fl)) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1(EKO) mice).

View Article and Find Full Text PDF

Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts.

View Article and Find Full Text PDF

We show that prostacyclin production is increased in bone and osteocytes from sclerostin (Sost) knockout mice which have greatly increased bone mass. The addition of prostacyclin or a prostacyclin analog to bone forming osteoblasts enhances differentiation and matrix mineralization of osteoblasts. The increase in prostacyclin synthesis is linked to increases in β-catenin concentrations and activity as shown by enhanced binding of lymphoid enhancer factor, Lef1, to promoter elements within the prostacyclin synthase promoter.

View Article and Find Full Text PDF

The sterol hormone, 1α,25-dihydroxyvitamin D₃ (1α,25(OH)₂D₃), regulates gene expression and messenger RNA (mRNA) concentrations in zebrafish in vivo. Since mRNA concentrations and translation are influenced by micro-RNAs (miRNAs), we examined the influence of 1α,25(OH)₂D₃ on miRNA expression in zebrafish in vivo with whole transcriptome RNA sequencing, searched for miRNA binding sites in 1α,25(OH)₂D₃-sensitive genes, and performed correlation analyses between 1α,25(OH)₂D₃-sensitive miRNAs and mRNAs. In vehicle- and 1α,25(OH)₂D₃-treated, 7-day postfertilization larvae, between 282 and 295 known precursor miRNAs were expressed, and in vehicle- and 1α,25(OH)₂D₃-treated fish, between 83 and 122 novel miRNAs were detected.

View Article and Find Full Text PDF

Inactivating mutations of the SOST (sclerostin) gene are associated with overgrowth and sclerosis of the skeleton. To determine mechanisms by which increased amounts of calcium and phosphorus are accreted to enable enhanced bone mineralization in the absence of sclerostin, we measured concentrations of calciotropic and phosphaturic hormones, and urine and serum calcium and inorganic phosphorus in mice in which the sclerostin (sost) gene was replaced by the β-D-galactosidase (lacZ) gene in the germ line. Knockout (KO) (sost(-/-)) mice had increased bone mineral density and content, increased cortical and trabecular bone thickness, and greater net bone formation as a result of increased osteoblast and decreased osteoclast surfaces compared with wild-type (WT) mice.

View Article and Find Full Text PDF

The EF-hand protein, DREAM/KChIP3 (henceforth referred to as DREAM), regulates apoptosis by incompletely understood mechanisms. We demonstrate that in the presence of Ca2+, DREAM interacts with hexokinase I, a protein known to bind mitochondria and regulate apoptosis. A mutant DREAM protein construct incapable of binding Ca2+ does not associate with hexokinase I.

View Article and Find Full Text PDF

Downstream regulatory element antagonistic modulator (DREAM/KChIP3), a neuronal EF-hand protein, modulates pain, potassium channel activity, and binds presenilin 1. Using affinity capture of neuronal proteins by immobilized DREAM/KChIP3 in the presence and absence of calcium (Ca(2+)) followed by mass spectroscopic identification of interacting proteins, we demonstrate that in the presence of Ca(2+), DREAM/KChIP3 interacts with the EF-hand protein, calmodulin (CaM). The interaction of DREAM/KChIP3 with CaM does not occur in the absence of Ca(2+).

View Article and Find Full Text PDF

The biological role of vitamin D receptors (VDR), which are abundantly expressed in developing zebrafish (Danio rerio) as early as 48 h after fertilization, and before the development of a mineralized skeleton and mature intestine and kidney, is unknown. We probed the role of VDR in developing zebrafish biology by examining changes in expression of RNA by whole transcriptome shotgun sequencing (RNA-seq) in fish treated with picomolar concentrations of the VDR ligand and hormonal form of vitamin D(3), 1α,25-dihydroxyvitamin D(3) [1α,25(OH)(2)D(3))].We observed significant changes in RNAs of transcription factors, leptin, peptide hormones, and RNAs encoding proteins of fatty acid, amino acid, xenobiotic metabolism, receptor-activator of NFκB ligand (RANKL), and calcitonin-like ligand receptor pathways.

View Article and Find Full Text PDF

Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts.

View Article and Find Full Text PDF

The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column.

View Article and Find Full Text PDF

To gain insights into the mechanism of action of sclerostin, a protein that regulates bone mass, we performed yeast two-hybrid analyses using human SOST (sclerostin) cDNA cloned into pGBKT7 DNA-binding domain vector as a bait, and a normalized, high-complexity, universal cDNA library in a GAL4 activating domain vector. We identified an interaction between sclerostin and the carboxyl-terminal portion of the receptor tyrosine-protein kinase erbB-3. To determine the biological relevance of this interaction, we treated MC3T3-E1 mouse osteoblast cells transfected with either a SOST expression plasmid or a control vector, with recombinant heregulin/neuregulin.

View Article and Find Full Text PDF

Sclerostin, a secreted glycoprotein, regulates osteoblast function. Using yeast two-hybrid and direct protein interaction analyses, we demonstrate that sclerostin binds the Wnt-modulating and Wnt-modulated, extracellular matrix protein, cysteine-rich protein 61 (Cyr61, CCN1), which regulates mesenchymal stem cell proliferation and differentiation, osteoblast and osteoclast function, and angiogenesis. Sclerostin was shown to inhibit Cyr61-mediated fibroblast attachment, and Cyr61 together with sclerostin increases vascular endothelial cell migration and increases osteoblast cell division.

View Article and Find Full Text PDF

We developed and characterized monoclonal antibodies directed against the amino-terminal and carboxy-terminal regions of human and mouse sclerostin (scl). Amino-terminal and carboxy-terminal scl peptides with limited homology to scl domain-containing protein-1 were synthesized using f-moc chemistry. The peptides were conjugated to keyhole limpet hemocyanin and the conjugates were used for immunization of mice.

View Article and Find Full Text PDF

Vitamin D and vitamin D metabolites such as 25-hydroxyvitamin D and 1alpha,25-dihydroxyvitamin D [1alpha,25(OH)(2)D(3)] circulate in the serum of fish. The receptor for 1alpha,25(OH)(2)D(3) (VDR) has previously been cloned from fish intestine, and ligand binding assays have shown the presence of the VDR in the gills, intestine, and liver of fish. Using immunohistochemical methods with specific antibodies against the VDR, we now report that the VDR is widely expressed in tissues of the adult male and female zebrafish, Danio rerio, specifically in epithelial cells of gills, tubular cells of the kidney, and absorptive cells in the intestine.

View Article and Find Full Text PDF

The mechanisms by which phosphorus homeostasis is preserved in mammals are not completely understood. We demonstrate the presence of a mechanism by which the intestine detects the presence of increased dietary phosphate and rapidly increases renal phosphate excretion. The mechanism is of physiological relevance because it maintains plasma phosphate concentrations in the normal range after ingestion of a phosphate-containing meal.

View Article and Find Full Text PDF

The phosphaturic activity of intact, full-length, fibroblast growth factor-23 (FGF-23) is well documented. FGF-23 circulates as the intact protein and as fragments generated as the result of proteolysis of the full-length protein. To assess whether short fragments of FGF-23 are phosphaturic, we compared the effect of acute, equimolar infusions of full-length FGF-23 and various FGF-23 fragments carboxyl-terminal to amino acid 176.

View Article and Find Full Text PDF

The Calcium-Sensing Receptor (CaSR) is a G-protein-coupled receptor that regulates calcium homeostasis by altering parathyroid hormone release, and which binds divalent and trivalent cations, amino acids, polyamines, and polycationic ligands. To obtain information about the structural properties of the CaSR, we expressed milligram quantities of a pure, homogeneous, and functional fragment of the human CaSR extracellular domain (residues 20-535). The expressed and purified protein is folded and binds both neomycin and calcium.

View Article and Find Full Text PDF