Publications by authors named "Theodora S Brisimi"

Financial losses in Medicaid, from Fraud, Waste and Abuse (FWA), in the United States are estimated to be in the tens of billions of dollars each year. This results in escalating costs as well as limiting the funding available to worthy recipients of healthcare. The Centers for Medicare & Medicaid Services mandate thorough auditing, in which policy investigators manually research and interpret the policy to validate the integrity of claims submitted by providers for reimbursement, a very time-consuming process.

View Article and Find Full Text PDF

Urban living in modern large cities has significant adverse effects on health, increasing the risk of several chronic diseases. We focus on the two leading clusters of chronic disease, heart disease and diabetes, and develop data-driven methods to predict hospitalizations due to these conditions. We base these predictions on the patients' medical history, recent and more distant, as described in their Electronic Health Records (EHR).

View Article and Find Full Text PDF

To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training.

View Article and Find Full Text PDF

Background: In an era of "big data," computationally efficient and privacy-aware solutions for large-scale machine learning problems become crucial, especially in the healthcare domain, where large amounts of data are stored in different locations and owned by different entities. Past research has been focused on centralized algorithms, which assume the existence of a central data repository (database) which stores and can process the data from all participants. Such an architecture, however, can be impractical when data are not centrally located, it does not scale well to very large datasets, and introduces single-point of failure risks which could compromise the integrity and privacy of the data.

View Article and Find Full Text PDF

This paper tackles linear programming problems with data uncertainty and applies it to an important inventory control problem. Each element of the constraint matrix is subject to uncertainty and is modeled as a random variable with a bounded support. The classical robust optimization approach to this problem yields a solution with guaranteed feasibility.

View Article and Find Full Text PDF

Background: In 2008, the United States spent $2.2 trillion for healthcare, which was 15.5% of its GDP.

View Article and Find Full Text PDF