Purpose: The purpose of this study is to create an organ dose database for pediatric individuals undergoing chest, abdomen/pelvis, and head computed tomography (CT) examinations, and to report the differences in absorbed organ doses, when anatomical differences exist for pediatric patients.
Methods: The GATE Monte Carlo (MC) toolkit was used to model the GE BrightSpeed Elite CT model. The simulated scanner model was validated with the standard Computed Tomography Dose Index (CTDI) head phantom.
Purpose: Herein, we introduce a methodology for estimating the absorbed dose in organs at risk that is based on specified clinically derived radiopharmaceutical biodistributions and personalized anatomical characteristics.
Methods: To evaluate the proposed methodology, we used realistic Monte Carlo (MC) simulations and computational pediatric models to calculate a parameter called in this work the "specific absorbed dose rate" (SADR). The SADR is a unique quantitative metric in that it is specific to a particular organ.
Simultaneous PET/MR/EEG (Positron Emission Tomography - Magnetic Resonance - Electroencephalography), a new tool for the investigation of neuronal networks in the human brain, is presented here within the framework of the European Union Project TRIMAGE. The trimodal, cost-effective PET/MR/EEG imaging tool makes use of cutting edge technology both in PET and in MR fields. A novel type of magnet (1.
View Article and Find Full Text PDFNuclear medicine and radiation therapy, although well established, are still rapidly evolving, by exploiting animal models, aiming to define precise dosimetry in molecular imaging protocols. The purpose of the present study was to create a dataset based on the MOBY phantom for the calculation of organ-to-organ S-values of commonly used radionuclides. S-values of most crucial organs were calculated using specific biodistributions with a whole-body heterogeneous source.
View Article and Find Full Text PDF