Publications by authors named "Theodor M Fliedner"

Chronic exposure of mammals to low dose-rates of ionizing radiation affects proliferating cell systems as a function of both dose-rate and the total dose accumulated. The lower the dose-rate the higher needs to be the total dose for a deterministic effect, i.e.

View Article and Find Full Text PDF

Mass casualties after radiation exposure pose an enormous logistical challenge for national health services worldwide. Successful medical treatment of radiation victims requires that a plan for medical radiation accident management be established, that the plan be tested in regular exercises, and that it be found to be effective in the management of actual victims of a radiological incident. These activities must be provided by a critical mass of clinicians who are knowledgeable in the diagnosis and management of radiation injury.

View Article and Find Full Text PDF

After accidental radiation exposure, one of the most significant health impairments is the partial or complete failure of the blood forming systems. Depending on the degree of damage, a suitable therapy must be prepared in time. This requires the assessment of the degree of damage of the blood-forming system and, in particular, of the stem-cell pool.

View Article and Find Full Text PDF

The concern of the public regarding terrorist actions involving nuclear emergencies resulted in the reopening of the discussion regarding the best ways to cope with the inevitable health impairments. Medical experts from the US and from Europe considered it of importance to harmonize at an international level the diagnostic and therapeutic approaches regarding the radiation-induced health impairments. The present contribution is the result of the first U.

View Article and Find Full Text PDF

Context: Radioactive contamination from the Chernobyl nuclear accident that happened on the morning of 26th April 1986 had a major impact on thyroid health in the Belarus region.

Objective: Observational study of a cohort of 99 adults, most strongly exposed to ionizing radioactivity.

Design, Setting And Patients: Observational study performed between 1998 and 2000.

View Article and Find Full Text PDF

On the occasion of the first international workshop on systems radiation biology we review the role of cell renewal systems in maintaining the integrity of the mammalian organism after irradiation. First, 11 radiation emergencies characterized by chronic or protracted exposure of the human beings to ionizing irradiation were "revisited". The data provide evidence to suggest that at a daily exposure of about 10-100 mSv, humans are capable of coping with the excess cell loss for weeks or even many months without hematopoietic organ failure.

View Article and Find Full Text PDF

Radiation exposure leads to a risk for long-term deterministic and stochastic late effects. Two individuals exposed to protracted photon radiation in the radiological accident at the Lilo Military site in Georgia in 1997 received follow-up treatment and resection of several chronic radiation ulcers in the Bundeswehr Hospital Ulm, Germany, in 2003. Multi-parameter analysis revealed that spermatogenetic arrest and serum hormone levels in both patients had recovered compared to the status in 1997.

View Article and Find Full Text PDF

Objective: The objective of this review is to provide a scientific justification for using the pattern of changes of granulocytes, platelets, and lymphocytes within the first few days after an accidental whole-body exposure to ionizing radiation as a convincing indicator of the severity of its effect on the hematopoietic stem cell pool.

Method: The availability of the SEARCH database system (System for Evaluation and Archiving of Radiation Accidents based on Case Histories) allowed us to analyze the "early" blood cell changes after accidental whole-body radiation exposure in more than 100 patients and to assign them to severity of effect code H4 and H3, described in the METREPOL approach.

Results: A specific pattern of blood cell changes (granulocytes, platelets, lymphocytes) within the first 5 to 8 days after exposure is compatible with the assumption of an irreversible damage of the stem cell pool distributed throughout the skeletal bone marrow designated as H4.

View Article and Find Full Text PDF

Purpose Of Review: This review reports on a novel approach to use blood cell change patterns after accidental whole body radiation exposure (to be expected as a consequence of nuclear terrorism) as reliable indicators of effect and as an aid to plan therapeutic measures.

Recent Findings: There is growing concern about the potential of nuclear terrorism. Several scenarios are being discussed.

View Article and Find Full Text PDF

Background: During the Chernobyl accident in 1986, 237 individuals were identified as having the most severe exposure to ionizing radiation. In the period between 1998 and 2000, 99 long term survivors out of this group were reassessed for radiation-induced cutaneous lesions.

Objective: To identify sequelae of accidental cutaneous irradiation.

View Article and Find Full Text PDF

The medical management of radiation accidents requires intensive planning and action. This article looks at the medical management of recent radiation accidents to derive principles for structuring and organizing the treatment of patients who may have radiation-induced health impairments. Although the radiation accidents in Tokai-mura, Japan and Lilo, Georgia were small-scale accidents, they illustrate important and characteristic symptoms and clinical developments.

View Article and Find Full Text PDF

In some radiation accidents, exposure doses are delivered over days or even months. In all cases the organ system most relevant to a patient's survival is the hematopoietic tissue. There appears to be a threshold of approximately 10 mSv per day above which hematopoietic effects become apparent and hematopoietic failure may occur.

View Article and Find Full Text PDF