Compartmentalization is a major prerequisite for the origin of life on earth according to Wächtershäuser "Iron-Sulfur-World". The hypothesis is mainly based on an autocatalytic inorganic energy reproducing redox system consisting of iron and sulfur as requirement for the subsequent synthesis of complex organic structures. Here, we modified [FeFe]-hydrogenase models by means of covalent coupling to either oleic acid or the amphiphilic block copolymer polybutadiene-polyethyleneoxide (PB-PEO) and incorporated those into the membranes of vesicles composed of phospholipids (liposomes) or the unmodified amphiphilic polymer (polymersomes).
View Article and Find Full Text PDFAccording to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today.
View Article and Find Full Text PDFIn search for peptidic [FeFe] hydrogenase mimics, the cyclic disulfide Sandostatin (octreotide) was allowed to react with Fe(3)(CO)(12). An octreotide-Fe(2)(CO)(6) complex was isolated and characterized spectroscopically as well as by elemental and thermochemical analysis. The complex catalyzes the electrochemical reduction of H(+) to H(2).
View Article and Find Full Text PDFOrig Life Evol Biosph
October 2007
The theory of chemoautotrophy, as developed by Wächtershäuser, has been subject to experimental studies, which show a possible carbon fixation pathway of several consecutive steps from simple CO2 to amino acids, using the redox system of iron sulphide and hydrogen sulphide. Main findings were a mimicking of the acetyl-CoA enzyme reaction using the mixed sulphide (Fe,Ni)S and the reduction of dinitrogen to ammonia. Present studies aim at a more detailed investigation of the mechanism of the redox system FeS/H2S and its properties.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2007
Rydberg matter (RM) is a novel metal-like material in the form of electronically excited clusters of atoms (e.g. K and H) or molecules (e.
View Article and Find Full Text PDF