Eukaryotes have one replicative helicase known as CMG, which centrally organizes and drives the replisome, and leads the way at the front of replication forks. Obtaining a deep mechanistic understanding of the dynamics of CMG is critical to elucidating how cells achieve the enormous task of efficiently and accurately replicating their entire genome once per cell cycle. Single-molecule techniques are uniquely suited to quantify the dynamics of CMG due to their unparalleled temporal and spatial resolution.
View Article and Find Full Text PDFIntegrated single-molecule force-fluorescence spectroscopy setups allow for simultaneous fluorescence imaging and mechanical force manipulation and measurements on individual molecules, providing comprehensive dynamic and spatiotemporal information. Dual-beam optical tweezers (OT) combined with a confocal scanning microscope form a force-fluorescence spectroscopy apparatus broadly used to investigate various biological processes, in particular, protein:DNA interactions. Such experiments typically involve imaging of fluorescently labeled proteins bound to DNA and force spectroscopy measurements of trapped individual DNA molecules.
View Article and Find Full Text PDFChromatin replication involves the assembly and activity of the replisome within the nucleosomal landscape. At the core of the replisome is the Mcm2-7 complex (MCM), which is loaded onto DNA after binding to the Origin Recognition Complex (ORC). In yeast, ORC is a dynamic protein that diffuses rapidly along DNA, unless halted by origin recognition sequences.
View Article and Find Full Text PDFThe eukaryotic replicative helicase CMG centrally orchestrates the replisome and leads the way at the front of replication forks. Understanding the motion of CMG on the DNA is therefore key to our understanding of DNA replication. In vivo, CMG is assembled and activated through a cell-cycle-regulated mechanism involving 36 polypeptides that has been reconstituted from purified proteins in ensemble biochemical studies.
View Article and Find Full Text PDFDuring every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks.
View Article and Find Full Text PDFRing-shaped structural maintenance of chromosomes (SMC) complexes like condensin and cohesin extrude loops of DNA. It remains, however, unclear how they can extrude DNA loops in chromatin that is bound with proteins. Here, we use in vitro single-molecule visualization to show that nucleosomes, RNA polymerase, and dCas9 pose virtually no barrier to loop extrusion by yeast condensin.
View Article and Find Full Text PDFMultiplexed single-molecule magnetic tweezers (MT) have recently been employed to probe the RNA synthesis dynamics of RNA-dependent RNA polymerases (RdRp). Here, we present a protocol for simultaneously probing the RNA synthesis dynamics of hundreds of single polymerases with MT. We describe the preparation of a dsRNA construct for probing single RdRp kinetics.
View Article and Find Full Text PDFDNA replication in eukaryotes initiates at many origins distributed across each chromosome. Origins are bound by the origin recognition complex (ORC), which, with Cdc6 and Cdt1, recruits and loads the Mcm2-7 (MCM) helicase as an inactive double hexamer during G1 phase. The replisome assembles at the activated helicase in S phase.
View Article and Find Full Text PDFRNA viruses pose a threat to public health that is exacerbated by the dearth of antiviral therapeutics. The RNA-dependent RNA polymerase (RdRp) holds promise as a broad-spectrum, therapeutic target because of the conserved nature of the nucleotide-substrate-binding and catalytic sites. Conventional, quantitative, kinetic analysis of antiviral ribonucleotides monitors one or a few incorporation events.
View Article and Find Full Text PDFRecent advances in high-throughput single-molecule magnetic tweezers have paved the way for obtaining information on individual molecules as well as ensemble-averaged behavior in a single assay. Here we describe how to design robust high-throughput magnetic tweezers assays that specifically require application of high forces (>20pN) for prolonged periods of time (>1000s). We elaborate on the strengths and limitations of the typical construct types that can be used and provide a step-by-step guide towards a high tether yield assay based on two examples.
View Article and Find Full Text PDFThe bidirectional replication of a circular chromosome by many bacteria necessitates proper termination to avoid the head-on collision of the opposing replisomes. In Escherichia coli, replisome progression beyond the termination site is prevented by Tus proteins bound to asymmetric Ter sites. Structural evidence indicates that strand separation on the blocking (nonpermissive) side of Tus-Ter triggers roadblock formation, but biochemical evidence also suggests roles for protein-protein interactions.
View Article and Find Full Text PDFBackground: Chromosome engineering encompasses a collection of homologous recombination-based techniques that are employed to modify the genome of a model organism in a controlled fashion. Such techniques are widely used in both fundamental and industrial research to introduce multiple insertions in the same Escherichia coli strain. To date, λ-Red recombination (also known as recombineering) and P1 phage transduction are the most successfully implemented chromosome engineering techniques in E.
View Article and Find Full Text PDFIntroduction: Increased expression of αv integrins is frequently associated with tumor cell adhesion, migration, invasion and metastasis, and correlates with poor prognosis in breast cancer. However, the mechanism by which αv integrins can enhance breast cancer progression is still largely unclear. The effects of therapeutic targeting of αv integrins in breast cancer also have yet to be investigated.
View Article and Find Full Text PDFMagnetic tweezers are a powerful single-molecule technique that allows real-time quantitative investigation of biomolecular processes under applied force. High pulling forces exceeding tens of picoNewtons may be required, e.g.
View Article and Find Full Text PDFTGF-β plays a dual role in cancer; in early stages it inhibits tumor growth, whereas later it promotes invasion and metastasis. TGF-β is thought to be pro-invasive by inducing epithelial-to-mesenchymal transition (EMT) via induction of transcriptional repressors, including Slug and Snail. In this study, we investigated the role of Snail and Slug in TGF-β-induced invasion in an in vitro invasion assay and in an embryonic zebrafish xenograft model.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2012
β- and γ-secretase cleave the amyloid precursor protein (APP) to release the amyloidogenic β-amyloid peptides (Aβ) and the APP intracellular domain (AICD). Aβ has been widely believed to initiate pathogenic cascades culminating in Alzheimer's disease (AD). However, the physiological functions of the AICD remain elusive.
View Article and Find Full Text PDFTGF-β has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stage(1,2). Moreover, TGF-β is frequently overexpressed in breast cancer and its expression correlates with poor prognosis and metastasis (3,4). The mechanisms by which TGF-β induces invasion are not well understood.
View Article and Find Full Text PDFBackground: The transforming growth factor (TGF)-β superfamily comprises cytokines such as TGF-β and Bone Morphogenetic Proteins (BMPs), which have a critical role in a multitude of biological processes. In breast cancer, high levels of TGF-β are associated with poor outcome, whereas inhibition of TGF-β-signaling reduces metastasis. In contrast, BMP-7 inhibits bone metastasis of breast cancer cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2011
Amyloid precursor protein (APP), a key protein in pathogenesis of Alzheimer's disease (AD), is a type I transmembrane protein which can be cleaved by β- and γ-secretase to release the amyloidogenic β-amyloid peptides (Aβ) and the APP intracellular domain (AICD). While Aβ has been widely believed to initiate pathogenic cascades culminating AD, the physiological functions and regulations of AICD remain elusive. In present study, endogenous AICD was demonstrated to be increased by canonical Wnt signal.
View Article and Find Full Text PDFGlycogen synthase kinase 3β (GSK3β) regulates diverse physiological processes, including metabolism, development, oncogenesis, and neuroprotection. GSK3β kinase activity has been reported to be critical for various types of cancer cells, but the mechanism has remained elusive. In this study we examine the mechanism by which GSK3β regulates the survival of leukemia cells.
View Article and Find Full Text PDFAmyloid beta (Aβ) precursor protein (APP) is a key protein in the pathogenesis of Alzheimer's disease (AD). Both APP and its paralogue APLP1 (amyloid beta precursor-like protein 1) have multiple functions in cell adhesion and proliferation. Previously it was thought that autophagy is a novel beta-amyloid peptide (Aβ)-generating pathway activated in AD.
View Article and Find Full Text PDFThe canonical Wnt pathway plays an important role in the regulation of cell proliferation and differentiation. Activation of this signaling pathway causes disruption of the Axin/adenomatous polyposis coli/glycogen synthase kinase 3β complex, resulting in stabilization of β-catenin and its association with lymphoid enhancer factor/T-cell factor in the nucleus. Here, we identify Fas-associated factor 1 (FAF1) as a negative regulator of Wnt/β-catenin signaling.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGFbeta) are potent regulators of angiogenesis. How VEGF and TGFbeta signaling pathways crosstalk is not well understood. Therefore, we analyzed the effects of the TGFbeta type-I-receptor inhibitors (SB-431542 and LY-2157299) and VEGF on endothelial cell (EC) function and angiogenesis.
View Article and Find Full Text PDFBackground: Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a pro-apoptotic member of the Bcl-2 family induced under hypoxia. Low or absent expression has recently been described in human tumors, including gastrointestinal tumors, resulting in poor prognosis. Little is known about BNIP3 expression in invasive breast cancer.
View Article and Find Full Text PDFMurine radiation-induced acute myeloid leukaemia (AML) is characterized by loss of one copy of chromosome 2. Previously, we positioned the critical haematopoietic-specific transcription factor PU.1 within a minimally deleted region.
View Article and Find Full Text PDF