Publications by authors named "Theo Thepen"

To date, no curative therapy is available for the treatment of most chronic inflammatory diseases such as atopic dermatitis, rheumatoid arthritis, or autoimmune disorders. Current treatments require a lifetime supply for patients to alleviate clinical symptoms and are unable to stop the course of disease. In contrast, a new series of immunotherapeutic agents targeting the Fc γ receptor I (CD64) have emerged and demonstrated significant clinical potential to actually resolving chronic inflammation driven by M1-type dysregulated macrophages.

View Article and Find Full Text PDF

Fc gamma receptor I (FcγRI, CD64) is a well-known target antigen for passive immunotherapy against acute myeloid leukemia and chronic myelomonocytic leukemia. We recently reported the preclinical immunotherapeutic potential of microtubule associated protein tau (MAP) against a variety of cancer types including breast carcinoma and Hodgkin's lymphoma. Here we demonstrate that the CD64-directed human cytolytic fusion protein H22(scFv)-MAP kills ex vivo 15-50% of CD64+ leukemic blasts derived from seven myeloid leukemia patients.

View Article and Find Full Text PDF

Classical immunotoxins compromise a binding component (for example, a ligand, antibody or fragment thereof) and a cytotoxic component, usually derived from bacteria or plants (for example, Pseudomonas exotoxin A or ricin). Despite successful testing in vitro, the clinical development of immunotoxins has been hampered by immunogenicity and unsatisfactory safety profiles. Therefore, research has focused on fully human pro-apoptotic components suitable for the development of cytolytic fusion proteins (CFP).

View Article and Find Full Text PDF

Macrophages are key players in controlling the immune response that can adapt to microenvironmental signals. This results in distinct polarization states (classical M1 or alternative M2), that play a differential role in immune regulation. In general, the M1 contribute to onset of inflammation, whereas the M2 orchestrate resolution and repair, whereby failure to switch from predominantly M1 to M2 reinforces a pro-inflammatory environment and chronic inflammation.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine that plays a critical role in many inflammatory diseases. Soluble TNF can be neutralized by monoclonal antibodies (mAbs), and this is a widely-used therapeutic approach. However, some patients do not respond to anti-TNF therapy due to the increased expression of CD64 on monocytes and macrophages.

View Article and Find Full Text PDF

In normal epithelia, the epithelial cell adhesion molecule (EpCAM) expression is relatively low and only present at the basolateral cell surface. In contrast, EpCAM is aberrantly overexpressed in various human carcinomas. Therefore, EpCAM is considered to be a highly promising target for antibody-based cancer immunotherapy.

View Article and Find Full Text PDF

CMML (chronic myelomonocytic leukemia) belongs to the group of myeloid neoplasms known as myelodysplastic and myeloproliferative diseases. In some patients with a history of CMML, the disease transforms to acute myelomonocytic leukemia (AMML). There are no specific treatment options for patients suffering from CMML except for supportive care and DNA methyltransferase inhibitors in patients with advanced disease.

View Article and Find Full Text PDF

Hodgkin lymphoma (HL) and systemic anaplastic large cell lymphoma (sALCL) are rare lymphoproliferative cancer types. Although most HL patients can be cured by chemo- and radio-therapy, 4-50% of patients relapse and have a poor prognosis. The need for improved therapeutic options for patients with relapsed or refractory disease has been addressed by CD30-specific antibody-based immunotherapeutics.

View Article and Find Full Text PDF

Immunotoxins are promising targeted therapeutic agents comprising an antibody-based ligand that specifically binds to diseased cells, and a pro-apoptotic protein. Toxic components from bacteria or plants can trigger a neutralizing immune response, so that human effector molecules are more suitable. In this context, the protease granzyme B has been successfully tested in cytotoxicity assays against different cancer cells in vitro and in vivo.

View Article and Find Full Text PDF

Diseases caused by chronic inflammation (e.g., arthritis, multiple sclerosis and diabetic ulcers) are multicausal, thus making treatment difficult and inefficient.

View Article and Find Full Text PDF

In vivo optical Imaging is an inexpensive and highly sensitive modality to investigate and follow up diseases like breast cancer. However, fluorescence labels and specific tracers are still works in progress to bring this promising modality into the clinical day-to-day use. In this study an anti-MUC-1 binding single-chain antibody fragment was screened, produced and afterwards labeled with newly designed and surface modified NaYF(4):Yb,Er upconversion nanoparticles as fluorescence reporter constructs.

View Article and Find Full Text PDF

Background: Macrophages are major effectors of the local inflammatory response syndrome (LIRS) and influence the extent of ischaemia/reperfusion injury, thereby impacting organ function. Several subgroups of macrophages exist, representing distinct modes of action. The specific role of the subset expressing Fc gamma receptor (FcγR) 1 in the activated state of macrophages is poorly defined.

View Article and Find Full Text PDF

Purpose: Preclinical in vivo analyses of treatment responses are an important prerequisite to evaluate new therapeutics. Molecular in vivo imaging in the far red (FR)/near infra red (NIR) is a promising method, as it enables measurements at different time points in individual animals, thereby reducing the number of animals required, while increasing statistical significance. Here, we show the establishment of a method to monitor response to treatment using fluorescent cells, expressing the epidermal growth factor receptor (EGFR), a target already used in therapy.

View Article and Find Full Text PDF

Target-specific acute myeloid leukemia (AML) immunotherapy requires selective cell-surface antigens on AML blast cells. CD64 is a promising candidate antigen because it is abundantly expressed on monocytoid differentiated AML subtypes. In previous studies, a chemically linked full-length anti-CD64 immunotoxin based on ricin A showed promising results in several animal models, but further development has been hindered by its substantial, dose-limiting off-target effects.

View Article and Find Full Text PDF

Purpose: The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression.

Methods: Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine.

View Article and Find Full Text PDF

Bispecific molecules (BSMs) facilitate the targeting of immune effector cells to tumor cells. Here we describe the construction and characterization of a recombinant BSM comprising two single chain fragments: H22(scFv), targeting the Fc gamma-receptor (CD64) on monocytes, and Ki4(scFv), targeting CD30 on Hodgkin lymphoma cells. A homologous, chemically-linked BSM has been described previously, but is heterogeneous and difficult to prepare.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) cells of subtypes M4 and M5 show enhanced expression of CD64 (FcgammaRI), the high-affinity receptor for IgG, which is normally expressed at high levels only on activated cells of the myeloid lineage. CD64 is therefore a prime target for the specific delivery of cytotoxic agents. A promising toxin candidate is granzyme B, a human serine protease originating from cytotoxic granules of CD8+ T lymphocytes and natural killer cells.

View Article and Find Full Text PDF

We report the construction of a fusion protein comprising the extracellular domain of myelin oligodendrocyte glycoprotein (MOG) and a truncated version of Pseudomonas aeruginosa exotoxin A (ETA'). The chimeric immunotoxin targeted MOG-reactive B-lymphocytes by binding selectively to the appropriate receptors, leading to internalization and apoptosis of the target cells. The functionality of the immunotoxin was tested on a MOG-sensitive murine hybridoma cell line and ex vivo on freshly isolated splenocytes from transgenic IgH(MOG) mice.

View Article and Find Full Text PDF

Macrophages are known to play a key role during inflammation in rheumatoid arthritis (RA). Inflammatory macrophages have increased expression of CD64, the high-affinity receptor for IgG. Targeting this receptor through a CD64-directed immunotoxin, composed of an Ab against CD64 and Ricin A, results in effective killing of inflammatory macrophages.

View Article and Find Full Text PDF

The ectodomain of human FcgammaRI (rsCD64) was expressed in HEK 293T cells and purified by immobilized-metal affinity chromatography. Binding activity to human IgG was verified by ELISA and the isotype-specificity determined by a surface plasmon resonance inhibition assay was found to be the same as for native CD64. The active concentration of the rsCD64 preparation was derived using a solution competition assay and was used for the subsequent kinetic analysis.

View Article and Find Full Text PDF

Mucosal tolerance prevents the body from eliciting productive immune responses against harmless Ags that enter the body via the mucosae, and is mediated by the induction of regulatory T cells that differentiate in the mucosa-draining lymph nodes (LN) under defined conditions of Ag presentation. In this study, we show that mice deficient in FcgammaRIIB failed to develop mucosal tolerance to OVA, and demonstrate in vitro and in vivo a critical role for this receptor in modulating the Ag-presenting capacity of dendritic cells (DC). In vitro it was shown that absence of FcgammaRIIB under tolerogenic conditions led to increased IgG-induced release of inflammatory cytokines such as MCP-1, TNF-alpha, and IL-6 by bone marrow-derived DC, and increased their expression of costimulatory molecules, resulting in an altered immunogenic T cell response associated with increased IL-2 and IFN-gamma secretion.

View Article and Find Full Text PDF

Pulmonary macrophages provide the preferred hiding and replication site of Mycobacterium tuberculosis but display antimicrobial functions. This raises questions regarding the role of macrophages during tuberculosis. We depleted lungs of activated macrophages (activated macrophage(-) mice) and compared this with nonselective macrophage depletion (macrophage(-) mice).

View Article and Find Full Text PDF

CD64, the high affinity receptor for IgG (FcgammaRI) is expressed on acute myeloid leukemia blast cells and has recently been described as a specific target for immunotherapy. To generate a recombinant immunotoxin, the anti-CD64 single chain fragment (scFv) m22 was cloned into the bacterial expression vector pBM1.1 and fused to a deletion mutant of Pseudomonas exotoxin A (ETA').

View Article and Find Full Text PDF

Objective: To determine whether monocyte/macrophages from rheumatoid arthritis (RA) patients can be selectively eliminated by a toxin-conjugated antibody CD64-ricin A (CD64-RiA) directed toward the high-affinity receptor for IgG (FcgammaRI), exploiting the capacity of FcgammaRI to efficiently endocytose antibody which it has bound.

Methods: Mononuclear cells from peripheral blood (PB) and synovial fluid (SF) obtained from RA patients were cultured in the presence of CD64-RiA. Cell death of monocyte/macrophages was measured by phenotypic changes (light-scatter patterns and CD14 and FcgammaRI expression) and apoptosis (nuclear DNA fragmentation).

View Article and Find Full Text PDF