Publications by authors named "Theo Smit"

Vaginal reconstruction is necessary for various congenital and acquired conditions, including vaginal aplasia, trauma, tumors, and gender incongruency. Current surgical and non-surgical treatments often result in significant complications. Decellularized vaginal matrices (DVMs) from human tissue offer a promising alternative, but require effective sterilization to ensure safety and functionality.

View Article and Find Full Text PDF

Measurement of auricle parameters for planning and post-operative evaluation presents substantial challenges due to the complex 3D structure of the human auricle. Traditional measurement methods rely on manual techniques, resulting in limited precision. This study introduces a novel automated surface-based three-dimensional measurement method for quantifying human auricle parameters.

View Article and Find Full Text PDF

Background: When a disorder causes the absence of a healthy, full-size vagina, various neovaginal creation methods are available. Sometimes dilation or stretching of the vaginal cavity is sufficient, but intestinal or dermal flap tissue is generally required. However, different inherent tissue properties cause complications.

View Article and Find Full Text PDF

Background: Commonly used methods to evaluate auricles are subjective and are therefore not specific, comprehensive, and precise nor effective in the assessment of microtia reconstruction outcomes. This scoping review aimed to summarize the objective methods for the accurate evaluation of microtia reconstruction.

Methods: We performed a scoping review of publications that used objective measurement methods to evaluate outcomes of microtia reconstruction according to the PRISMA-ScR guidelines.

View Article and Find Full Text PDF

Back pain is the leading cause of disability with half of cases attributed to intervertebral disc (IVD) degeneration, yet currently no therapies target this cause. We previously reported an caprine loaded disc culture system (LDCS) that accurately represents the cellular phenotype and biomechanical environment of human IVD degeneration. Here, the efficacy of an injectable hydrogel system (LAPONITE® crosslinked pNIPAM--DMAc, (NPgel)) to halt or reverse the catabolic processes of IVD degeneration was investigated within the LDCS.

View Article and Find Full Text PDF

Vaginoplasty is a surgical solution to multiple disorders, including Mayer-Rokitansky-Küster-Hauser syndrome and male-to-female gender dysphoria. Using nonvaginal tissues for these reconstructions is associated with many complications, and autologous vaginal tissue may not be sufficient. The potential of tissue engineering for vaginoplasty was studied through a systematic bibliography search.

View Article and Find Full Text PDF

Bile colloids containing taurocholate and lecithin are essential for the solubilization of hydrophobic molecules including poorly water-soluble drugs such as Perphenazine. We detail the impact of Perphenazine concentrations on taurocholate/lecithin colloids using analytical ultracentrifugation, dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance spectroscopy, coarse-grained molecular dynamics simulations, and isothermal titration calorimetry. Perphenazine impacted colloidal molecular arrangement, structure, and binding thermodynamics in a concentration-dependent manner.

View Article and Find Full Text PDF

Type I collagen scaffolds for tissue reconstruction often have impaired mechanical characteristics such as limited stiffness and lack of strength. In this study, a new technique is presented to fine-tune stiffness and biodegradability of collagen scaffolds by treatment with concentrated salt solutions. Collagen scaffolds were prepared by a casting, freezing and lyophilization process.

View Article and Find Full Text PDF

Aim Of The Study: Osteogenesis imperfecta and Ehlers Danlos syndrome are hereditary disorders caused primarily by defective collagen regulation. Osteogenesis imperfecta patients were divided to haploinsufficient and dominant negative depending on the effect of COL1A1 and COL1A2 mutations whereas Ehlers Danlos syndrome patients had a mutation in PLOD1. Although collagen abnormalities have been extensively studied in monolayer cultures, there are no reports about 3D in vitro models which may reflect more accurately the dynamic cell environment.

View Article and Find Full Text PDF

Objective: Excessive articular loading, for example, an ankle sprain, may result in focal osteochondral damage, initiating a vicious degenerative process resulting in posttraumatic osteoarthritis (PTOA). Better understanding of this degenerative process would allow improving posttraumatic care with the aim to prevent PTOA. The primary objective of this study was to establish a drop-weight impact testing model with controllable, reproducible and quantitative axial impact loads to induce osteochondral damage in caprine tibiotalar joints.

View Article and Find Full Text PDF

Traditionally tissue samples are analysed using protein or enzyme specific stains on serial sections to build up a picture of the distribution of components contained within them. In this study we investigated the potential of multivariate curve resolution-alternating least squares (MCR-ALS) to deconvolute 2nd derivative spectra of Fourier transform infrared (FTIR) microscopic images measured in transflectance mode of goat and human paraffin embedded intervertebral disc (IVD) tissue sections, to see if this methodology can provide analogous information to that provided by immunohistochemical stains and bioassays but from a single section. MCR-ALS analysis of non-degenerate and enzymatically in vivo degenerated goat IVDs reveals five matrix components displaying distribution maps matching histological stains for collagen, elastin and proteoglycan (PG), as well as immunohistochemical stains for collagen type I and II.

View Article and Find Full Text PDF

Pelvic organ prolapse (POP) is characterised by the weakening of the pelvic floor support tissues, and often by subsequent prolapse of the bladder outside the body, i.e. cystocele.

View Article and Find Full Text PDF

Objective: The use of knitted, polypropylene meshes for the surgical treatment of pelvic organ prolapse (POP) is frequently accompanied by severe complications. Looking for alternatives, we studied the potential of three different electrospun matrices in supporting the adhesion, proliferation, and matrix deposition of POP and non-POP fibroblasts, the most important cells to produce extracellular matrix (ECM), in vitro.

Study Design: We electrospun three commonly used medical materials: nylon; poly (lactide-co-glycolide) blended with poly-caprolactone (PLGA/PCL); and poly-caprolactone blended with gelatin (PCL/Gelatin).

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo.

View Article and Find Full Text PDF

Damage and degeneration of the skeletal elements due to disease, trauma, and aging lead to a significant health and economical burden. To reduce this burden, skeletal tissue engineering strategies aim to regenerate functional bone and cartilage in the adult body. However, challenges still exist.

View Article and Find Full Text PDF

Embryonic skeletogenesis involves proliferation, condensation and subsequent chondrogenic differentiation of mesenchymal precursor cells, and the strains and stresses inherent to these processes have been hypothesized to influence skeletal development. The aim of this study was to determine the effect of growth-mimicking strain on the process of early skeletal development in vitro. To this end, we applied continuous uniaxial strain to embryonic skeletal precursor cells in micromass culture.

View Article and Find Full Text PDF

Purpose: To assess the feasibility of a one-step surgical concept, employing adipose stem cells (ASCs) and a novel degradable radiolucent cage filler (poly-L-lactide-co-caprolactone; PLCL), within polyetheretherketone cages in a stand-alone caprine spinal fusion model.

Methods: A double-level fusion study was performed in 36 goats. Four cage filler groups were defined: (i) acellular PLCL, (ii) PLCL + SVF (freshly harvested stromal vascular fraction highly enriched in ASCs); (iii) PLCL + ASCs (cultured to homogeneity); and (iv) autologous iliac crest bone graft (ABG).

View Article and Find Full Text PDF

Pelvic organ prolapse (POP) remains a great therapeutic challenge with no optimal treatment available. Tissue maintenance and remodelling are performed by fibroblasts, therefore altered cellular functionality may influence tissue quality. In this study, we evaluated functional characteristics of fibroblastic cells from tissues involved in POP.

View Article and Find Full Text PDF

Purpose: To evaluate intervertebral disc (IVD) degeneration and treatments, an objective diagnostic tool is needed. Recently, T2* relaxation time mapping was proposed as a technique to assess early IVD degeneration, yet the correlation with biochemical content and histological features has not been investigated previously. Our objective was to validate T2* mapping for disc degeneration by correlating this technique with accepted parameters of IVD degeneration.

View Article and Find Full Text PDF

Purpose: Intervertebral discs exhibit time-dependent deformation (creep), which could influence the relation between applied stress and intradiscal pressure. This study investigates the effect of prolonged dynamic loading on intradiscal pressure, disc height and compressive stiffness, and examines their mutual relationships.

Methods: Fifteen caprine lumbar discs with 5 mm of vertebral bone on either side were compressed by 1 Hz sinusoidal load for 4.

View Article and Find Full Text PDF

The development of the vertebral column starts with the formation of a linear array of mesenchymal condensations, forming the blueprint for the eventual alternating pattern of bone and cartilage. Despite growing insight into the molecular mechanisms of morphogenesis, the impact of the physical aspects of the environment is not well understood. We hypothesized that geometric boundary conditions may play a pivotal role in the linear patterning of condensations, as neighbouring tissues provide physical constraints to the cell population.

View Article and Find Full Text PDF

Lung fibrosis is characterized by excessive deposition of extracellular matrix. This not only affects tissue architecture and function, but it also influences fibroblast behavior and thus disease progression. Here we describe the expression of elastin, type V collagen and tenascin C during the development of bleomycin-induced lung fibrosis.

View Article and Find Full Text PDF

Background Context: Degeneration, injury, and surgical interventions may alter the mechanical properties of spinal motion segments, but the quantification of these alterations in vivo is problematic. Manual or instrumented loading of single segments in the intact spine as applied intraoperatively may overestimate the mechanical properties of this segment, because the applied load is partly sustained by the adjacent segments.

Purpose: The distribution of stiffness values of individual spinal segments within and across spines was determined so as to use these data as input to a model simulation of segment stiffness tests in intact spines, to assess measurement errors.

View Article and Find Full Text PDF

During embryonic development, morphogenetic processes give rise to a variety of shapes and patterns that lead to functional tissues and organs. While the impact of chemical signals on these processes is widely studied, the role of physical cues is less understood. The aim of this study was to test the hypothesis that the interplay of cell mediated contraction and mechanical boundary conditions alone can result in spatially regulated differentiation in simple 3D constructs.

View Article and Find Full Text PDF

Regenerative therapies offer attractive alternatives for the treatment of osteochondral defects. Adipose-derived stromal vascular fraction (SVF) cells allow the development of one-step surgical procedures by their abundant availability and high frequency. In this pilot study we evaluated the in vivo safety, feasibility, and efficacy of this concept using scaffolds seeded with freshly isolated (SVF) or cultured adipose stem cells (ASCs), and compared these to their acellular counterparts.

View Article and Find Full Text PDF