Publications by authors named "Theo Lange"

Brassinosteroids (BRs) are required for various aspects of plant growth and development, but also participate in stress responses. The hormones convey their activity through transcriptional regulation and posttranslational modification of transcription factors and one class are basic helix-loop-helix (bHLH) proteins of the BR Enhanced Expression (BEE) subfamily, which in include BEE1-3 and CESTA (CES). CES and the BEEs promote the expression of different BR-responsive genes, including genes encoding gibberellin (GA) biosynthetic and catabolizing enzymes, as well as cold-responsive genes.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are plant steroids that have growth-promoting capacities, which are partly enabled by an ability to induce biosynthesis of gibberellins (GAs), a second class of plant hormones. In addition, BRs can also activate GA catabolism; here we show that in Arabidopsis (Arabidopsis thaliana) the basic helix-loop-helix transcription factor CESTA (CES) and its homologues BRASSINOSTEROID-ENHANCED EXPRESSION (BEE) 1 and 3 contribute to this activity. CES and the BEEs are BR-regulated at the transcriptional and posttranslational level and participate in different physiological processes, including vegetative and reproduction development, shade avoidance, and cold stress responses.

View Article and Find Full Text PDF

Many developmental processes in plants are regulated by GA hormones. GA homeostasis is achieved via complex biosynthetic and catabolic pathways. GA catabolic enzymes include GA 2-oxidases that are classified into three classes.

View Article and Find Full Text PDF

Bioactive gibberellins (GAs) are central regulators of plant growth and development, including seed development. GA homeostasis is achieved via complex biosynthetic and catabolic pathways, whose exact activities remain to be elucidated. Here, we isolated two cDNAs from mature or imbibed cucumber seeds with high sequence similarity to known GA 3-oxidases.

View Article and Find Full Text PDF

Gibberellin (GA) hormones regulate the development of plants and their responses to environmental signals. The final part of GA biosynthesis is catalyzed by multifunctional 2-oxoglutarate-dependent dioxygenases, which are encoded by multigene families. According to their enzymatic properties and physiological functions, GA-oxidases are classified as anabolic or catabolic enzymes.

View Article and Find Full Text PDF

Plants are able to sense a rise in temperature of several degrees, and appropriately adapt their metabolic and growth processes. To this end, plants produce various signalling molecules that act throughout the plant body. Here, we report that root-derived GA, a precursor of the bioactive gibberellins, mediates thermo-responsive shoot growth in Arabidopsis.

View Article and Find Full Text PDF

Asexual and sexual reproduction occur jointly in many angiosperms. Stolons (elongated stems) are used for asexual reproduction in the crop species potato () and strawberry ( spp), where they produce tubers and clonal plants, respectively. In strawberry, stolon production is essential for vegetative propagation at the expense of fruit yield, but the underlying molecular mechanisms are unknown.

View Article and Find Full Text PDF

Gibberellins (GAs) are hormones that control many aspects of plant development, including flowering. It is well known that stamen is the source of GAs that regulate male and bisexual flower development. However, little is known about the role of GAs in female flower development.

View Article and Find Full Text PDF

Flowering in plants is a dynamic and synchronized process where various cues including age, day length, temperature and endogenous hormones fine-tune the timing of flowering for reproductive success. Arabidopsis thaliana is a facultative long day (LD) plant where LD photoperiod promotes flowering. Arabidopsis still flowers under short-day (SD) conditions, albeit much later than in LD conditions.

View Article and Find Full Text PDF

Plant growth and development are highly regulated processes that are coordinated by hormones including the brassinosteroids (BRs), a group of steroids with structural similarity to steroid hormones of mammals. Although it is well understood how BRs are produced and how their signals are transduced, BR targets, which directly confer the hormone's growth-promoting effects, have remained largely elusive. Here, we show that BRs regulate the biosynthesis of gibberellins (GAs), another class of growth-promoting hormones, in Arabidopsis thaliana.

View Article and Find Full Text PDF

Touch can lead to a reduction in plant growth and a delay in flowering time. Touch-induced changes in plant morphology, termed thigmomorphogenesis, have been shown to depend on the phytohormone jasmonate(1). However, touch-induced phenotypes are also reminiscent of plants deficient in the phytohormone gibberellin(2).

View Article and Find Full Text PDF

Ent-kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent-kaurenoic acid (KA) to gibberellin (GA) GA12 , the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2.

View Article and Find Full Text PDF

GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization.

View Article and Find Full Text PDF

Cucurbits have been used widely to elucidate gibberellin (GA) biosynthesis. With the recent availability of the genome sequence for the economically important cucurbit Cucumis sativus, sequence data became available for all genes potentially involved in GA biosynthesis for this species. Sixteen cDNAs were cloned from root and shoot of 3-d to 7-d old seedlings and from mature seeds of C.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production.

View Article and Find Full Text PDF

Hormones play pivotal roles in regulating plant development, growth, and stress responses, and cross-talk among different hormones fine-tunes various aspects of plant physiology. Jasmonic acid (JA) is important for plant defense against herbivores and necrotic fungi and also regulates flower development; in addition, Arabidopsis mutants over-producing JA usually have stunted stems and wound-induced jasmonates suppress Arabidopsis growth, suggesting that JA is also involved in stem elongation. Gibberellins (GAs) promote stem and leaf growth and modulate seed germination, flowering time, and the development of flowers, fruits, and seeds.

View Article and Find Full Text PDF

Gibberellin (GA) signalling during pumpkin male flower development is highly regulated, including biosynthetic, perception, and transduction pathways. GA 20-oxidases, 3-oxidases, and 2-oxidases catalyse the final part of GA synthesis. Additionally, 7-oxidase initiates this part of the pathway in some cucurbits including Cucurbita maxima L.

View Article and Find Full Text PDF

The consequences of altered abscisic acid (ABA) sensitivity in gray poplar (Populus x canescens [Ait.] Sm.) development were examined by ectopic expression of the Arabidopsis (Arabidopsis thaliana) mutant abi1 (for abscisic acid insensitive1) gene.

View Article and Find Full Text PDF

Geranyl diphosphate synthase (GPS) is generally considered to be responsible for the biosynthesis of monoterpene precursors only. However, reduction of LeGPS expression in tomato (Lycopersicon esculentum) by virus-induced gene silencing resulted in severely dwarfed plants. Further analysis of these dwarfed plants revealed a decreased gibberellin content, whereas carotenoid and chlorophyll levels were unaltered.

View Article and Find Full Text PDF

Bahiagrass (Paspalum notatum Flugge) is a prime candidate for molecular improvement of turf quality. Its persistence and low input characteristics made it the dominant utility turfgrass along highways in the south-eastern USA. However, the comparatively poor turf quality due to reduced turf density and prolific production of unsightly inflorescences currently limits the widespread use of bahiagrass as residential turf.

View Article and Find Full Text PDF

The formation and growth of a potato (Solanum tuberosum) tuber is a complex process regulated by different environmental signals and plant hormones. In particular, the action of gibberellins (GAs) has been implicated in different aspects of potato tuber formation. Here we report on the isolation and functional analysis of a potato GA 2-oxidase gene (StGA2ox1) and its role in tuber formation.

View Article and Find Full Text PDF

Immature pumpkin (Cucurbita maxima) seeds contain gibberellin (GA) oxidases with unique catalytic properties resulting in GAs of unknown function for plant growth and development. Overexpression of pumpkin GA 7-oxidase (CmGA7ox) in Arabidopsis (Arabidopsis thaliana) resulted in seedlings with elongated roots, taller plants that flower earlier with only a little increase in bioactive GA4 levels compared to control plants. In the same way, overexpression of the pumpkin GA 3-oxidase1 (CmGA3ox1) resulted in a GA overdose phenotype with increased levels of endogenous GA4.

View Article and Find Full Text PDF

A gibberellin (GA) biosynthetic pathway was discovered operating in root tips of 7-d-old pumpkin (Cucurbita maxima) seedlings. Stepwise analysis of GA metabolism in cell-free systems revealed the conversion of GA(12)-aldehyde to bioactive GA(4) and inactive GA(34). Highest levels of endogenous GA(4) and GA(34) were found in hypocotyls and root tips of 3-d-old seedlings.

View Article and Find Full Text PDF