Publications by authors named "Theo Geisel"

Musical sequences are correlated dynamical processes that may differ depending on musical styles. We aim to quantify the correlations through power spectral analysis of pitch sequences in a large corpus of musical compositions as well as improvised performances. Using a multitaper method we extend the power spectral estimates down to the smallest possible frequencies optimizing the tradeoff between bias and variance.

View Article and Find Full Text PDF

Jazz music that swings has the fascinating power to elicit a pleasant sensation of flow in listeners and the desire to synchronize body movements with the music. Whether microtiming deviations (MTDs), i.e.

View Article and Find Full Text PDF

Musical rhythms performed by humans typically show temporal fluctuations. While they have been characterized in simple rhythmic tasks, it is an open question what is the nature of temporal fluctuations, when several musicians perform music jointly in all its natural complexity. To study such fluctuations in over 100 original jazz and rock/pop recordings played with and without metronome we developed a semi-automated workflow allowing the extraction of cymbal beat onsets with millisecond precision.

View Article and Find Full Text PDF

Perception, cognition and behavior rely on flexible communication between microcircuits in distinct cortical regions. The mechanisms underlying rapid information rerouting between such microcircuits are still unknown. It has been proposed that changing patterns of coherence between local gamma rhythms support flexible information rerouting.

View Article and Find Full Text PDF

Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g.

View Article and Find Full Text PDF

Spatial heterogeneity of a host population of mobile agents has been shown to be a crucial determinant of many aspects of disease dynamics, ranging from the proliferation of diseases to their persistence and to vaccination strategies. In addition, the importance of regional and structural differences grows in our modern world. Little is known, though, about the consequences when traits of a disease vary regionally.

View Article and Find Full Text PDF

In self-organized critical (SOC) systems avalanche size distributions follow power-laws. Power-laws have also been observed for neural activity, and so it has been proposed that SOC underlies brain organization as well. Surprisingly, for spiking activity in vivo, evidence for SOC is still lacking.

View Article and Find Full Text PDF

The magnitude and variability of Earth's biodiversity have puzzled scientists ever since paleontologic fossil databases became available. We identify and study a model of interdependent species where both endogenous and exogenous impacts determine the nonstationary extinction dynamics. The framework provides an explanation for the qualitative difference of marine and continental biodiversity growth.

View Article and Find Full Text PDF

Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure, both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a small minimum frequency.

View Article and Find Full Text PDF

Synchronized bursting is found in many brain areas and has also been implicated in the pathophysiology of neuropsychiatric disorders such as epilepsy, Parkinson's disease, and schizophrenia. Despite extensive studies of network burst synchronization, it is insufficiently understood how this type of network wide synchronization can be strengthened, reduced, or even abolished. We combined electrical recording using multi-electrode array with optical stimulation of cultured channelrhodopsin-2 transducted hippocampal neurons to study and manipulate network burst synchronization.

View Article and Find Full Text PDF

This article discusses the compositional structure of hand movements by analyzing and modeling neural and behavioral data obtained from experiments where a monkey (Macaca fascicularis) performed scribbling movements induced by a search task. Using geometrically based approaches to movement segmentation, it is shown that the hand trajectories are composed of elementary segments that are primarily parabolic in shape. The segments could be categorized into a small number of classes on the basis of decreasing intra-class variance over the course of training.

View Article and Find Full Text PDF

Critical behavior in neural networks is characterized by scale-free avalanche size distributions and can be explained by self-regulatory mechanisms. Theoretical and experimental evidence indicates that information storage capacity reaches its maximum in the critical regime. We study the effect of structural connectivity formed by Hebbian learning on the criticality of network dynamics.

View Article and Find Full Text PDF

Waves traveling through weakly random media are known to be strongly affected by their corresponding ray dynamics, in particular in forming linear freak waves. The ray intensity distribution, which, e.g.

View Article and Find Full Text PDF

A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically infeasible, even in simpler systems like dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct structural connectivity from network activity monitored through calcium imaging. We focus in this study on the inference of excitatory synaptic links.

View Article and Find Full Text PDF

Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity), related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks.

View Article and Find Full Text PDF

Although human musical performances represent one of the most valuable achievements of mankind, the best musicians perform imperfectly. Musical rhythms are not entirely accurate and thus inevitably deviate from the ideal beat pattern. Nevertheless, computer generated perfect beat patterns are frequently devalued by listeners due to a perceived lack of human touch.

View Article and Find Full Text PDF

We show that a harmonic lattice model with amplifying and attenuating elements, when coupled to two thermal baths, exhibits unique heat transport properties. Some of these novel features include anomalous nonequilibrium steady-state heat currents, negative differential thermal conductance, as well as nonreciprocal heat transport. We find that when these elements are arranged in a PT-symmetric manner, the domain of existence of the nonequilibrium steady state is maximized.

View Article and Find Full Text PDF

Sensory and cognitive processing relies on the concerted activity of large populations of neurons. The advent of modern experimental techniques like two-photon population calcium imaging makes it possible to monitor the spiking activity of multiple neurons as they are participating in specific cognitive tasks. The development of appropriate theoretical tools to quantify and interpret the spiking activity of multiple neurons, however, is still in its infancy.

View Article and Find Full Text PDF

Even very weak correlated disorder potentials can cause extreme fluctuations in Hamiltonian flows. In two dimensions this leads to a pronounced branching of the flow. Although present in a great variety of physical systems, a quantitative theory of the branching statistics is lacking.

View Article and Find Full Text PDF

Concerted neural activity can reflect specific features of sensory stimuli or behavioral tasks. Correlation coefficients and count correlations are frequently used to measure correlations between neurons, design synthetic spike trains and build population models. But are correlation coefficients always a reliable measure of input correlations? Here, we consider a stochastic model for the generation of correlated spike sequences which replicate neuronal pairwise correlations in many important aspects.

View Article and Find Full Text PDF

We study how threshold models and neocortical neurons transfer temporal and interneuronal input correlations to correlations of spikes. In both, we find that the low common input regime is governed by firing rate dependent spike correlations which are sensitive to the detailed structure of input correlation functions. In the high common input regime, the spike correlations are largely insensitive to the firing rate and exhibit a universal peak shape.

View Article and Find Full Text PDF

We analytically describe a transition scenario to self-organized criticality (SOC) that is new for physics as well as neuroscience; it combines the criticality of first and second-order phase transitions with a SOC phase. We consider a network of pulse-coupled neurons interacting via dynamical synapses, which exhibit depression and facilitation as found in experiments. We analytically show the coexistence of a SOC phase and a subcritical phase connected by a cusp bifurcation.

View Article and Find Full Text PDF

The response of a neuron to synaptic input strongly depends on whether or not the neuron has just emitted a spike. We propose a neuron model that after spike emission exhibits a partial response to residual input charges and study its collective network dynamics analytically. We uncover a desynchronization mechanism that causes a sequential desynchronization transition: In globally coupled neurons an increase in the strength of the partial response induces a sequence of bifurcations from states with large clusters of synchronously firing neurons, through states with smaller clusters to completely asynchronous spiking.

View Article and Find Full Text PDF

We analyze the dynamics of networks of spiking neural oscillators. First, we present an exact linear stability theory of the synchronous state for networks of arbitrary connectivity. For general neuron rise functions, stability is determined by multiple operators, for which standard analysis is not suitable.

View Article and Find Full Text PDF

The availability of efficient and reliable simulation tools is one of the mission-critical technologies in the fast-moving field of computational neuroscience. Research indicates that higher brain functions emerge from large and complex cortical networks and their interactions. The large number of elements (neurons) combined with the high connectivity (synapses) of the biological network and the specific type of interactions impose severe constraints on the explorable system size that previously have been hard to overcome.

View Article and Find Full Text PDF