Popular comparative phylogenetic models such as Brownian Motion, Ornstein-Ulhenbeck, and their extensions, assume that, at speciation, a trait value is inherited identically by two descendant species. This assumption contrasts with models of speciation at a micro-evolutionary scale where descendants' phenotypic distributions are sub-samples of the ancestral distribution. Different speciation mechanisms can lead to a displacement of the ancestral phenotypic mean among descendants and an asymmetric inheritance of the ancestral phenotypic variance.
View Article and Find Full Text PDFPast environmental changes are expected to have profoundly impacted diversity dynamics through time. While some previous studies showed an association between past climate changes or tectonic events and important shifts in lineage diversification, it is only recently that past environmental changes have been explicitly integrated in diversification models to test their influence on diversification rates. Here, we used a global reconstruction of tropical reef habitat dynamics during the Cenozoic and phylogenetic diversification models to test the influence of (i) major geological events, (ii) reef habitat fragmentation and (iii) reef area on the diversification of 9 major clades of tropical reef fish (Acanthuridae, Balistoidea, Carangoidea, Chaetodontidae, Haemulinae, Holocentridae, Labridae, Pomacentridae and Sparidae).
View Article and Find Full Text PDFGenerating genomic data for 19 tropical reef fish species of the Western Indian Ocean, we investigate how species ecology influences genetic diversity patterns from local to regional scales. We distinguish between the , and components of genetic diversity, which we subsequently link to six ecological traits. We find that the and components of genetic diversity are strongly correlated so that species with a high total regional genetic diversity display systematically high local diversity.
View Article and Find Full Text PDFWe develop a spatially explicit model of diversification based on palaeohabitat to explore the predictions of four major hypotheses potentially explaining the latitudinal diversity gradient (LDG), namely, the 'time-area', 'tropical niche conservatism', 'ecological limits' and 'evolutionary speed' hypotheses. We compare simulation outputs to observed diversity gradients in the global reef fish fauna. Our simulations show that these hypotheses are non-mutually exclusive and that their relative influence depends on the time scale considered.
View Article and Find Full Text PDFThe Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs.
View Article and Find Full Text PDF