Entanglements between polymer chains are responsible for the strength and toughness of polymeric materials. When the chains are too short to form entanglements, the polymer becomes weak and brittle. Here we show that molecular bridging of oligomers in molecular-scale confinement can dramatically toughen materials even when intermolecular entanglements are completely absent.
View Article and Find Full Text PDFHyperconnected network architectures can endow nanomaterials with remarkable mechanical properties that are fundamentally controlled by designing connectivity into the intrinsic molecular structure. For hybrid organic-inorganic nanomaterials, here we show that by using 1,3,5 silyl benzene precursors, the connectivity of a silicon atom within the network extends beyond its chemical coordination number, resulting in a hyperconnected network with exceptional elastic stiffness, higher than that of fully dense silica. The exceptional intrinsic stiffness of these hyperconnected glass networks is demonstrated with molecular dynamics models and these model predictions are calibrated through the synthesis and characterization of an intrinsically porous hybrid glass processed from 1,3,5(triethoxysilyl)benzene.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2012
We explore the application of a high-temperature precursor delivery system for depositing high boiling point organosilicate precursors on plastics using atmospheric plasma. Dense silica coatings were deposited on stretched poly(methyl methacrylate), polycarbonate and silicon substrates from the high boiling temperature precursor, 1, 2-bis(triethoxysilyl)ethane, and from two widely used low boiling temperature precursors, tetraethoxysilane and tetramethylcyclotetrasiloxane. The coating deposition rate, molecular network structure, density, Young's modulus and adhesion to plastics exhibited a strong dependence on the precursor delivery temperature and rate, and the functionality and number of silicon atoms in the precursor molecules.
View Article and Find Full Text PDFTitanium is a very attractive candidate for MOFs due to its low toxicity, redox activity, and photocatalytic properties. We present here MIL-125, the first example of a highly porous and crystalline titanium(IV) dicarboxylate (MIL stands for Materials of Institut Lavoisier) with a high thermal stability and photochemical properties. Its structure is built up from a pseudo cubic arrangement of octameric wheels, built up from edge- or corner-sharing titanium octahedra, and terephthalate dianions leading to a three-dimensional periodic array of two types of hybrid cages with accessible pore diameters of 6.
View Article and Find Full Text PDF