Publications by authors named "Theo Fovet"

The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (Camy et al.

View Article and Find Full Text PDF

The fibrocartilaginous tendon enthesis, i.e. the site where a tendon is attached to bone through a fibrocartilaginous tissue, is considered as a functionally graded interface.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how mechanical loading affects the structure and mechanical properties of the Achilles tendon enthesis after deconditioning from hindlimb suspension in mice.
  • Key findings include a severe reduction in the non-calcified fibrocartilage surface area and collagen disorganization after 14 days of unloading, but reloading for 6 days improved these features and enhanced collagen II expression.
  • The research highlights that unloading decreased the stiffness of the enthesis and changed the failure site, but reloading restored the original function, which is important for countermeasure exercises in spaceflight contexts.
View Article and Find Full Text PDF

Besides the loss of muscle mass and strength, increased intermuscular adipose tissue (IMAT) is now a well-recognized consequence of muscle deconditioning as experienced in prolonged microgravity. IMAT content may alter the muscle stem cell microenvironment. We hypothesized that extracellular matrix structure alterations and microenvironment remodeling induced by fast and severe muscle disuse could modulate fibro-adipogenic progenitor fate and behavior.

View Article and Find Full Text PDF

Physical activity is now recognized as an essential element of healthy lifestyles. However, intensive and repeated exercise practice produces a high level of stress that must be managed, particularly oxidative damage and inflammation. Many studies investigated the effect of antioxidants, but reported only few positive effects, or even muscle recovery impairment.

View Article and Find Full Text PDF

Muscle deconditioning is a major consequence of a wide range of conditions from spaceflight to a sedentary lifestyle, and occurs as a result of muscle inactivity, leading to a rapid decrease in muscle strength, mass, and oxidative capacity. The early changes that appear in the first days of inactivity must be studied to determine effective methods for the prevention of muscle deconditioning. To evaluate the mechanisms of muscle early changes and the vascular effect of a thigh cuff, a five-day dry immersion (DI) experiment was conducted by the French Space Agency at the MEDES Space Clinic (Rangueil, Toulouse).

View Article and Find Full Text PDF

Understanding the molecular pathways involved in the loss of skeletal muscle mass and function induced by muscle disuse is a crucial issue in the context of spaceflight as well as in the clinical field, and development of efficient countermeasures is needed. Recent studies have reported the importance of redox balance dysregulation as a major mechanism leading to muscle wasting. Our study aimed to evaluate the effects of an antioxidant/anti-inflammatory cocktail (741 mg of polyphenols, 138 mg of vitamin E, 80 μg of selenium, and 2.

View Article and Find Full Text PDF