Publications by authors named "Theo Dingermann"

Background: As patents for multiple sclerosis (MS) therapies expire, follow-on disease-modifying treatments (FO-DMTs) become available at reduced cost. Concerns exist that cheaper FO-DMTs are used simply to reduce healthcare costs. However, the well-being of people with MS should take priority.

View Article and Find Full Text PDF

In the 19th century, cardio-active steroid glycosides, shortly cardiac glycosides, were scientifically established as drugs against heart failure. Their , cellular, and molecular actions as well as their predominant target, Na-K-ATPase, have been comprehensively investigated in the 20th century and the discovery of endogenous cardiac glycosides has fostered this research field. In the last years, however, results from clinical trials and meta-analyses have questioned their therapeutic value due to efficacy and safety issues.

View Article and Find Full Text PDF

We among others have recently demonstrated that normal cells produce "fusion mRNAs". These fusion mRNAs do not derive from rearranged genomic loci, but rather they are derived from "early-terminated transcripts" (ETTs). Premature transcriptional termination takes place in intronic sequences that belong to "breakpoint cluster regions".

View Article and Find Full Text PDF

Chromosomal rearrangements of the MLL gene are uncommon in myelodysplastic syndromes (MDSs), and few studies of their molecular structures and oncogenic mechanisms exist. Here, we present a case of de novo MDS with a normal karyotype at initial diagnosis and a mild clinical course. Five years after the initial diagnosis, investigators identified a complex rearrangement of the MLL gene without progression to acute leukemia.

View Article and Find Full Text PDF

So far, about 800 different chromosomal translocations have been characterized in hemato-malignant and solid tumors. Chromosomal translocations mostly result in the expression of chimeric fusion proteins associated with enhanced proliferation and/or malignant transformation. Here, we demonstrate that genes frequently involved in such genetic rearrangements exhibit a unique feature: premature transcriptional termination.

View Article and Find Full Text PDF

Transcripts of NANOG and OCT4 have been recently identified in human t(4;11) leukemia and in a model system expressing both t(4;11) fusion proteins. Moreover, downstream target genes of NANOG/OCT4/SOX2 were shown to be transcriptionally activated. However, the NANOG1 gene belongs to a gene family, including a gene tandem duplication (named NANOG2 or NANOGP1) and several pseudogenes (NANOGP2-P11).

View Article and Find Full Text PDF