We present a detailed study of the kinetic cluster growth process during gelation of weakly attractive colloidal particles by means of experiments on critical Casimir attractive colloidal systems, simulations, and analytical theory. In the experiments and simulations, we follow the mean coordination number of the particles during the growth of clusters to identify an attractive-strength independent cluster evolution as a function of mean coordination number. We relate this cluster evolution to the kinetic attachment and detachment rates of particles and particle clusters.
View Article and Find Full Text PDFThere is more than foam: Optical microscopy images (with false colouring, see picture) depicting quick destabilization (within minutes) of foamulsions due to the coalescence of densely-packed oil droplets when heated at higher temperatures (65 °C).
View Article and Find Full Text PDFThe hydrophobins are a class of amphiphilic proteins which spontaneously adsorb at the air/water interface and form elastic membranes of high mechanical strength as compared to other proteins. The mechanism of hydrophobin adhesion is of interest for fungal biology and for various applications in electronics, medicine, and food industry. We established that the drainage of free foam films formed from HFBII hydrophobin solutions ends with the appearance of a 6 nm thick film, which consists of two layers of protein molecules, that is, it is a self-assembled bilayer (S-bilayer), with hydrophilic domains pointing inward and hydrophobic domains pointing outward.
View Article and Find Full Text PDFThis paper shows that low concentrations of beta-lactoglobulin fibrils can induce depletion-flocculation in beta-lactoglobulin-stabilized oil-in-water emulsions. The minimum required fibril concentration for flocculation was determined experimentally for fibril lengths of about 3 and 0.1 microm.
View Article and Find Full Text PDFThis paper describes an experimental comparison of microstructure, rheology, and demixing of bridging- and depletion-flocculated oil-in-water emulsions. Confocal scanning laser microscopy imaging showed that bridging-flocculated emulsions were heterogeneous over larger length scales than depletion-flocculated emulsions. As a consequence, G' as determined from diffusing wave spectroscopy (DWS) corresponded well with G' as measured macroscopically for the depletion-flocculated emulsions, but this correspondence was not found for the bridging-flocculated emulsions.
View Article and Find Full Text PDF