The novel CXC-chemokine ligand 16 (CXCL16) functions as transmembrane adhesion molecule on the surface of APCs and as a soluble chemoattractant for activated T cells. In this study, we elucidate the mechanism responsible for the conversion of the transmembrane molecule into a soluble chemokine and provide evidence for the expression and shedding of CXCL16 by fibroblasts and vascular cells. By transfection of human and murine CXCL16 in different cell lines, we show that soluble CXCL16 is constitutively generated by proteolytic cleavage of transmembrane CXCL16 resulting in reduced surface expression of the transmembrane molecule.
View Article and Find Full Text PDFWe describe here a classical molecular modeling exercise that was carried out to provide a basis for the design of novel antagonist ligands of the CCR2 receptor. Using a theoretical model of the CCR2 receptor, docking studies were carried out to define plausible binding modes for the various known antagonist ligands, including our own series of indole piperidine compounds. On the basis of these results, a number of site-directed mutations (SDM) were designed that were intended to verify the proposed docking models.
View Article and Find Full Text PDFThe CX3C chemokine fractalkine (CX3CL1) exists as a membrane-expressed protein promoting cell-cell adhesion and as a soluble molecule inducing chemotaxis. Transmembrane CX3CL1 is converted into its soluble form by defined proteolytic cleavage (shedding), which can be enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). PMA-induced CX3CL1 shedding has been shown to involve the tumor necrosis factor-alpha-converting enzyme (TACE), whereas the constitutive cleavage in unstimulated cells remains elusive.
View Article and Find Full Text PDFFractalkine/CX3C-chemokine ligand 1 is expressed as a membrane-spanning adhesion molecule that can be cleaved from the cell surface to produce a soluble chemoattractant. Within the vasculature, fractalkine is known to be generated by endothelial cells, but to date there are no reports describing its expression by smooth muscle cells (SMC). In this study we demonstrate that IFN-gamma and TNF-alpha, but not IL-1beta, cooperate synergistically to induce fractalkine mRNA and protein expression in cultured aortic SMC.
View Article and Find Full Text PDF