The epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone.
View Article and Find Full Text PDFGene expression programmes conferring cellular identity are achieved through the organization of chromatin structures that either facilitate or impede transcription. Among the key determinants of chromatin organization are the histone modifications that correlate with a given transcriptional status and chromatin state. Until recently, the details for the segregation of nucleosomes on DNA replication and their implications in re-establishing heritable chromatin domains remained unclear.
View Article and Find Full Text PDFChromatin domains and their associated structures must be faithfully inherited through cellular division to maintain cellular identity. However, accessing the localized strategies preserving chromatin domain inheritance, specifically the transfer of parental, pre-existing nucleosomes with their associated post-translational modifications (PTMs) during DNA replication, is challenging in living cells. We devised an inducible, proximity-dependent labeling system to irreversibly mark replication-dependent H3.
View Article and Find Full Text PDFThe major goal of this study was to perform an in depth characterization of the "gene signature" of human FoxP3(+) T regulatory cells (Tregs). Highly purified Tregs and T conventional cells (Tconvs) from multiple healthy donors (HD), either freshly explanted or activated in vitro, were analyzed via RNA sequencing (RNA-seq) and gene expression changes validated using the nCounter system. Additionally, we analyzed microRNA (miRNA) expression using TaqMan low-density arrays.
View Article and Find Full Text PDFDespite minimal disparity at the sequence level, mammalian H3 variants bind to distinct sets of polypeptides. Although histone H3.1 predominates in cycling cells, our knowledge of the soluble complexes that it forms en route to deposition or following eviction from chromatin remains limited.
View Article and Find Full Text PDFSpecification of the T helper 17 (Th17) cell lineage requires a well-defined set of transcription factors, but how these integrate with posttranscriptional and epigenetic programs to regulate gene expression is poorly understood. Here we found defective Th17 cell cytokine expression in miR-155-deficient CD4+ T cells in vitro and in vivo. Mir155 was bound by Th17 cell transcription factors and was highly expressed during Th17 cell differentiation.
View Article and Find Full Text PDFAlthough intergenic long noncoding RNAs (lincRNAs) have been linked to gene regulation in various tissues, little is known about lincRNA transcriptomes in the T cell lineages. Here we identified 1,524 lincRNA clusters in 42 T cell samples, from early T cell progenitors to terminally differentiated helper T cell subsets. Our analysis revealed highly dynamic and cell-specific expression patterns for lincRNAs during T cell differentiation.
View Article and Find Full Text PDFMicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired.
View Article and Find Full Text PDF