A key aim in biology is to identify which genetic changes contributed to the evolution of form through time. Apical dominance, the inhibitory effect exerted by shoot apices on the initiation or outgrowth of distant lateral buds, is a major regulatory mechanism of plant form. Nearly a century of studies in the sporophyte of flowering plants have established the phytohormone auxin as a front-runner in the search for key factors controlling apical dominance, identifying critical roles for long-range polar auxin transport and local auxin biosynthesis in modulating shoot branching.
View Article and Find Full Text PDFThe Arabidopsis Plant HomeoDomain (PHD) proteins AtMS1 and AtMMD1 provide chromatin-mediated transcriptional regulation essential for tapetum-dependent pollen formation. This pollen-based male gametogenesis is a derived trait of seed plants. Male gametogenesis in the common ancestors of land plants is instead likely to have been reminiscent of that in extant bryophytes where flagellated sperms are produced by an elaborate gametophyte generation.
View Article and Find Full Text PDFPrevious studies in the liverwort Marchantia polymorpha have shown that the putative evening complex (EC) genes LUX ARRHYTHMO (LUX) and ELF4-LIKE (EFL) have a function in the liverwort circadian clock. Here, we studied the growth phenotypes of MpLUX and MpEFL loss-of-function mutants, to establish if PHYTOCHROME-INTERACTING FACTOR (PIF) and auxin act downstream of the M. polymorpha EC in a growth-related pathway similar to the one described for the flowering plant Arabidopsis.
View Article and Find Full Text PDFClade II basic helix-loop-helix transcription factors (bHLH TFs) are essential for pollen production and tapetal nursing functions in angiosperm anthers. As pollen has been suggested to be related to bryophyte spores by descent, we characterized two Physcomitrium (Physcomitrella) patens clade II bHLH TFs (PpbHLH092 and PpbHLH098), to test if regulation of sporogenous cells and the nursing cells surrounding them is conserved between angiosperm anthers and bryophyte sporangia. We made CRISPR-Cas9 reporter and loss-of-function lines to address the function of PpbHLH092/098.
View Article and Find Full Text PDFAlthough land plant germ cells have received much attention, knowledge about their specification is still limited. We thus identified transcripts enriched in egg cells of the bryophyte model species Physcomitrium patens, compared the results with angiosperm egg cells, and selected important candidate genes for functional analysis. We used laser-assisted microdissection to perform a cell-type-specific transcriptome analysis on egg cells for comparison with available expression profiles of vegetative tissues and male reproductive organs.
View Article and Find Full Text PDFThe plant hormone auxin is a key factor for regulation of plant development, and this function was probably reinforced during the evolution of early land plants. We have extended the available toolbox to allow detailed studies of how auxin biosynthesis and responses are regulated in moss reproductive organs, their stem cells and gametes to better elucidate the function of auxin in the morphogenesis of early land plants. We measured auxin metabolites and identified IPyA (indole-3-pyruvic acid) as the main biosynthesis pathway in Physcomitrium (Physcomitrella) patens and established knock-out, overexpressor and reporter lines for biosynthesis genes which were analyzed alongside previously reported auxin-sensing and transport reporters.
View Article and Find Full Text PDFProtamine reduces platelet aggregation after cardiopulmonary bypass (CPB). We studied the inhibitory effect of a reduced protamine dose, the duration of impaired platelet function and the possible correlation to postoperative bleeding. Platelet function was assessed by impedance aggregometry in 30 patients undergoing cardiac surgery with CPB at baseline, before protamine administration, after 70% and 100% of the calculated protamine dose, after 20 minutes and at arrival to the intensive care unit.
View Article and Find Full Text PDFEfforts to reveal ancestral functions of auxin, a key regulator of plant growth and development, and its importance for evolution have been hampered by a fragmented picture of auxin response domains in early-diverging land plants. We report the mapping of auxin sensing and responses during vegetative moss development using novel reporters. We established a moss-specific ratiometric reporter (PpR2D2) for Auxin Response Element- and AUXIN RESPONSE FACTOR-independent auxin sensing in Physcomitrella patens, and its readout during vegetative development was compared with new promoter-based GmGH3::GFPGUS and DR5revV2::GFPGUS auxin response reporters.
View Article and Find Full Text PDFAuxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCF functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1).
View Article and Find Full Text PDFThe signalling molecule auxin regulates many fundamental aspects of growth and development in plants. We review and discuss what is known about auxin-regulated development in mosses, with special emphasis on the model species Physcomitrella patens. It is well established that mosses and other early diverging plants produce and respond to auxin.
View Article and Find Full Text PDFAutophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation.
View Article and Find Full Text PDFwas isolated and cultured from human blood for the first time in Scandinavia. The patient, an 83-year-old man from Dalarna, Sweden, recovered without antibiotic treatment, although a high mortality rate associated with infection had been reported from China, Canada and France. The genome of the strain ABBA15k was sequenced, assembled and analysed.
View Article and Find Full Text PDFIntroduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production.
View Article and Find Full Text PDFThe emergence and radiation of multicellular land plants was driven by crucial innovations to their body plans. The directional transport of the phytohormone auxin represents a key, plant-specific mechanism for polarization and patterning in complex seed plants. Here, we show that already in the early diverging land plant lineage, as exemplified by the moss Physcomitrella patens, auxin transport by PIN transporters is operational and diversified into ER-localized and plasma membrane-localized PIN proteins.
View Article and Find Full Text PDFIn order to establish a reference for analysis of the function of auxin and the auxin biosynthesis regulators SHORT INTERNODE/STYLISH (SHI/STY) during Physcomitrella patens reproductive development, we have described male (antheridial) and female(archegonial) development in detail, including temporal and positional information of organ initiation. This has allowed us to define discrete stages of organ morphogenesis and to show that reproductive organ development in P. patens is highly organized and that organ phyllotaxis differs between vegetative and reproductive development.
View Article and Find Full Text PDFInvestigation of the production of secondary metabolites of Heterobasidion occidentale led to the isolation and identification of six sesquiterpenes (illudolone A and B, illudolactone A and B, deoxyfomannosin A and B) along with the well-known sesquiterpene fomannosin and the previously described benzohydrofuran fomannoxin. The structures and relative configurations of the compounds were determined by 1D and 2D NMR spectroscopic analysis as well as by HRMS. Their absolute configuration and biosynthesis were suggested and discussed in relation to fomannosin.
View Article and Find Full Text PDFBackground: Hexokinase catalyzes the phosphorylation of glucose and fructose, but it is also involved in sugar sensing in both fungi and plants. We have previously described two types of hexokinases in the moss Physcomitrella. Type A, exemplified by PpHxk1, the major hexokinase in Physcomitrella, is a soluble protein that localizes to the chloroplast stroma.
View Article and Find Full Text PDFThe plant hormone auxin plays fundamental roles in vascular plants. Although exogenous auxin also stimulates developmental transitions and growth in non-vascular plants, the effects of manipulating endogenous auxin levels have thus far not been reported. Here, we have altered the levels and sites of auxin production and accumulation in the moss Physcomitrella patens by changing the expression level of homologues of the Arabidopsis SHI/STY family proteins, which are positive regulators of auxin biosynthesis genes.
View Article and Find Full Text PDFThe establishment and maintenance of auxin maxima in vascular plants is regulated by auxin biosynthesis and polar intercellular auxin flow. The disruption of normal auxin biosynthesis in mouse-ear cress (Arabidopsis thaliana) leads to severe abnormalities, suggesting that spatiotemporal regulation of auxin biosynthesis is fundamental for normal growth and development. We have shown previously that the induction of the SHORT-INTERNODES/STYLISH (SHI/STY) family member STY1 results in increased transcript levels of the YUCCA (YUC) family member YUC4 and also higher auxin levels and auxin biosynthesis rates in Arabidopsis seedlings.
View Article and Find Full Text PDFMosses (Bryophyta) are nonvascular plants that constitute a large part of the photosynthesizing biomass and carbon storage on Earth. Little is known about how this important portion of flora maintains its health status. This study assessed whether the moss, Physcomitrella patens, responds to treatment with chitosan, a fungal cell wall-derived compound inducing defense against fungal pathogens in vascular plants.
View Article and Find Full Text PDFThe yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant's ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development.
View Article and Find Full Text PDFThe filamentous gametophyte of the moss Physcomitrella patens consists of two filament types called chloronemata and caulonemata. Chloronemal cells are photosynthetically active with numerous chloroplasts, while caulonemata help to spread the colony by radial growth. The balance between the two filament types is affected by external factors such as light and plant hormones.
View Article and Find Full Text PDFThe yeast Snf1 protein kinase and its animal homologue, the AMP-activated protein kinase, play important roles in metabolic regulation, by serving as energy gauges that turn off energy-consuming processes and mobilize energy reserves during low-energy conditions. The closest homologue of these kinases in plants is Snf1-related protein kinase 1 (SnRK1). We have cloned two SnRK1-encoding genes, PpSNF1a and PpSNF1b, in the moss Physcomitrella patens, where gene function can be studied directly by gene targeting in the haploid gametophyte.
View Article and Find Full Text PDFHexokinase catalyzes the first step in the metabolism of glucose but has also been proposed to be involved in sugar sensing and signaling both in yeast and in plants. We have cloned a hexokinase gene, PpHXK1, in the moss Physcomitrella patens where gene function can be studied directly by gene targeting. PpHxk1 is a novel type of chloroplast stromal hexokinase that differs from previously studied membrane-bound plant hexokinases.
View Article and Find Full Text PDFWe describe a method for identifying signal transducing proteins from other organisms by their ability to turn on a signalling pathway when they are expressed at high level in yeast. The method was tested on a cDNA library from Arabidopsis thaliana, which was screened for clones that can activate glucose repression in the absence of glucose. Six clones were characterized.
View Article and Find Full Text PDF