Publications by authors named "Theis W"

Atomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.

View Article and Find Full Text PDF
Article Synopsis
  • Ferroelectric HfO-based thin films are being researched for their potential in advanced electronic devices, but understanding their ferroelectric properties at the nanoscale remains a challenge due to their complex structures.
  • Recent studies using electron microscopy techniques have detailed the in-plane domain structures of Y:HfO films, revealing how their unique grain boundaries and phases contribute to their ferroelectricity.
  • Key findings show that specific orientations and patterns within the grain structures enhance polarization, and the behavior of domain walls affects the overall ferroelectric performance depending on their alignment and thickness of the films.
View Article and Find Full Text PDF

Electronic nicotine delivery systems (ENDS) aerosol exposures can induce endothelial dysfunction (ED) in healthy young humans and animals. Thermal degradation of ENDS solvents, propylene glycol, and vegetable glycerin (PG: VG), generates abundant formaldehyde (FA) and other carbonyls. Because FA can activate the transient receptor potential ankyrin-1 (TRPA1) sensor, we hypothesized that FA in ENDS aerosols provokes TRPA1-mediated changes that include ED and "respiratory braking"-biomarkers of harm.

View Article and Find Full Text PDF

A key strategy for minimizing our reliance on precious metals is to increase the fraction of surface atoms and improve the metal-support interface. In this work, we employ a solvent/ligand/counterion-free method to deposit copper in the atomic form directly onto a nanotextured surface of graphitized carbon nanofibers (GNFs). Our results demonstrate that under these conditions, copper atoms coalesce into nanoparticles securely anchored to the graphitic step edges, limiting their growth to 2-5 nm.

View Article and Find Full Text PDF

Hollow vaterite microspheres are important materials for biomedical applications such as drug delivery and regenerative medicine owing to their biocompatibility, high specific surface area, and ability to encapsulate a large number of bioactive molecules and compounds. We demonstrated that hollow vaterite microspheres are produced by an Escherichia coli strain engineered with a urease gene cluster from the ureolytic bacteria Sporosarcina pasteurii in the presence of bovine serum albumin. We characterized the 3D nanoscale morphology of five biogenic hollow vaterite microspheres using 3D high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) tomography.

View Article and Find Full Text PDF

Scanning transmission electron microscopy is a common tool used to study the atomic structure of materials. It is an inherently multimodal tool allowing for the simultaneous acquisition of multiple information channels. Despite its versatility, however, experimental workflows currently rely heavily on experienced human operators and can only acquire data from small regions of a sample at a time.

View Article and Find Full Text PDF

The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects.

View Article and Find Full Text PDF

Photothermal nanomaterials have shown great potential for photothermal therapy. In this study, we developed a simple green method of magnesiothermic co-reduction for the synthesis of mesoporous, magnetic and biodegradable iron silicide nanoparticles (FeSi NPs) as applied to photothermal therapy (PTT). Starting from biogenic tabasheer extracted from bamboo and FeO, the resultant FeSi NPs with a much lower band gap exhibited excellent optical absorption with a photothermal conversion efficiency of 76.

View Article and Find Full Text PDF

E-cigarette use has surged, but the long-term health effects remain unknown. E-cigarette aerosols containing nicotine and acrolein, a combustion and e-cigarette byproduct, may impair cardiac electrophysiology through autonomic imbalance. Here we show in mouse electrocardiograms that acute inhalation of e-cigarette aerosols disturbs cardiac conduction, in part through parasympathetic modulation.

View Article and Find Full Text PDF

Nanomaterials with core-shell architectures are prominent examples of strain-engineered materials. The lattice mismatch between the core and shell materials can cause strong interface strain, which affects the surface structures. Therefore, surface functional properties such as catalytic activities can be designed by fine-tuning the misfit strain at the interface.

View Article and Find Full Text PDF

Despite the increasing popularity of e-cigarettes, their long-term health effects remain unknown. In animal models, exposure to e-cigarette has been reported to result in pulmonary and cardiovascular injury, and in humans, the acute use of e-cigarettes increases heart rate and blood pressure and induces endothelial dysfunction. In both animal models and humans, cardiovascular dysfunction associated with e-cigarettes has been linked to reactive aldehydes such as formaldehyde and acrolein generated in e-cigarette aerosols.

View Article and Find Full Text PDF

Orthogonal to guided growth of nanoparticle (NP) crystals using DNA or supramolecules, a trace amount of polymeric impurities (<0.1 wt.%) leads to reproducible, rapid growth of 3D NP crystals in solution and on patterned substrates with high yield.

View Article and Find Full Text PDF

Despite persistent and extensive observations of crystals with chiral shapes, the mechanisms underlying their formation are not well understood. Although past studies suggest that chiral shapes can form because of crystallization in the presence of chiral additives, or because of an intrinsic tendency that stems from the crystal structure, there are many cases in which these explanations are not suitable or have not been tested. Here, an investigation of model tellurium nanocrystals provides insights into the chain of chirality transfer between crystal structure and shape.

View Article and Find Full Text PDF

After more than a decade of electronic cigarette (E-cig) use in the United States, uncertainty persists regarding E-cig use and long-term cardiopulmonary disease risk. As all E-cigs use propylene glycol and vegetable glycerin (PG-VG) and generate abundant saturated aldehydes, mice were exposed by inhalation to PG-VG-derived aerosol, formaldehyde (FA), acetaldehyde (AA), or filtered air. Biomarkers of exposure and cardiopulmonary injury were monitored by mass spectrometry (urine metabolites), radiotelemetry (respiratory reflexes), isometric myography (aorta), and flow cytometry (blood markers).

View Article and Find Full Text PDF

Although crotonaldehyde (CR) is an abundant α,β-unsaturated aldehyde in mainstream cigarette smoke (MCS), the cardiovascular toxicity of inhaled CR is largely unexplored. Thus, male C57BL/6 J mice were exposed acutely (1 h, 6 h, and 4d) and chronically (12 weeks) to CR (at levels relevant to MCS; 1 and 3 ppm), and cardiovascular and systemic outcomes were measured in vivo and in vitro. Diastolic blood pressure was decreased (hypotension) by both acute and chronic CR exposure.

View Article and Find Full Text PDF

Red phosphorus is a promising photocatalyst with wide visible-light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]-oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.

View Article and Find Full Text PDF

A reliable method to prepare a surface-enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect-engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single-layer graphene. This defect-engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface.

View Article and Find Full Text PDF

The deposition of preformed nanocluster beams onto suitable supports represents a new paradigm for the precise preparation of heterogeneous catalysts. The performance of the new materials must be validated in model catalytic reactions. It is shown that gold/copper (Au/Cu) nanoalloy clusters (nanoparticles) of variable composition, created by sputtering and gas phase condensation before deposition onto magnesium oxide powders, are highly active for the catalytic reduction of 4-nitrophenol in solution at room temperature.

View Article and Find Full Text PDF

Electronic cigarettes (e-cigarette) have emerged as a popular electronic nicotine delivery system (ENDS) in the last decade. Despite the absence of combustion products and toxins such as carbon monoxide (CO) and tobacco-specific nitrosamines (TSNA), carbonyls including short-chain, toxic aldehydes have been detected in e-cigarette-derived aerosols up to levels found in tobacco smoke. Given the health concerns regarding exposures to toxic aldehydes, understanding both aldehyde generation in e-cigarette and e-cigarette exposure is critical.

View Article and Find Full Text PDF

The electronic cigarette (e-cigarette) has emerged as popular electronic nicotine delivery devices (ENDs). However, the general safety and validity of e-cigarettes for nicotine delivery efficacy are still not well understood. This study developed a new method for efficient measurement of nicotine levels in both the liquids (e-liquids) used in e-cigarettes and the aerosols generated from the e-cigarettes.

View Article and Find Full Text PDF

Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality.

View Article and Find Full Text PDF

Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field.

View Article and Find Full Text PDF
Article Synopsis
  • Crystallography has traditionally been used to determine 3D atomic positions in crystals, providing a global average but not specific individual atom locations.
  • A new method using electron tomography allows for the precise determination of the 3D coordinates of thousands of individual atoms, including defects, with a high level of accuracy (∼19 pm) and without relying on crystallinity.
  • This advancement enables detailed measurements of atomic displacement and strain at a micro-level, which can significantly impact various scientific fields such as materials science, physics, and biology.
View Article and Find Full Text PDF

Ozone (O3) is a serious public health concern. Recent findings indicate that the damaging health effects of O3 extend to multiple systemic organ systems. Herein, we hypothesize that O3 inhalation will cause downstream alterations to the liver.

View Article and Find Full Text PDF

Background & Aims: Rotavirus infection is a leading cause of morbidity and mortality in children younger than 5 years of age. Current treatment options are limited. We assessed the efficacy of a llama-derived, heavy-chain antibody fragment called anti-rotavirus protein (ARP1), in modifying the severity and duration of diarrhea in male infants with rotavirus infection.

View Article and Find Full Text PDF