Publications by authors named "Theeraporn Puntheeranurak"

Single molecule force spectroscopy was employed to investigate the dynamics of the sodium glucose co-transporter (SGLT1) upon substrate and inhibitor binding on the single molecule level. CHO cells stably expressing rbSGLT1 were probed by using atomic force microscopy tips carrying either thioglucose, 2'-aminoethyl β-d-glucopyranoside, or aminophlorizin. Poly(ethylene glycol) (PEG) chains of different length and varying end groups were used as tether.

View Article and Find Full Text PDF

Members of the SLC5 and SLC2 family are prominently involved in epithelial sugar transport. SGLT1 (sodium-glucose transporter) and SGLT2, as representatives of the former, mediate sodium-dependent uptake of sugars into intestinal and renal cells. GLUT2 (glucose transporter), as representative of the latter, facilitates the sodium-independent exit of sugars from cells.

View Article and Find Full Text PDF

In this work, we have enhanced the capability of an e-nose system based on combined optical and electrochemical transduction within a single gas sensor array. The optical part of this e-nose is based on detection of the absorption changes of light emitted from eight light emitting diodes (LEDs) as measured by a CMOS photo-detector. The electrochemical part works by measuring the change in electrical resistivity of the sensing materials upon contact with the sample vapor.

View Article and Find Full Text PDF

Artificial nose has recently become an emerging instrument for quality assurance in the food industry. These paper present the optical gas sensors based on Magnesium-5, 10, 15, 20-tetra phenyl-porphyrin (MgTPP) and Zinc-5, 10, 15, 20-tetra phenyl-porphyrin (ZnTPP) thin films and their application as an artificial nose. Based on the measurement of optical absorbance response using a general UV-Vis spectroscopy, this artificial nose was tested to discriminate various volatile organic compounds (VOCs) and Thai beverages.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has proven to be a powerful tool in biological sciences. Its particular advantage over other high-resolution methods commonly used is that biomolecules can be investigated not only under physiological conditions but also while they perform their biological functions. Single-molecule force spectroscopy with AFM tip-modification techniques can provide insight into intermolecular forces between individual ligand-receptor pairs of biological systems.

View Article and Find Full Text PDF

Proteins mediating the transport of solutes across the cell membrane control the intracellular conditions in which life can occur. Because of the particular arrangement of spanning a lipid bilayer and the many conformations required for their function, transport proteins pose significant obstacles for the investigation of their structure-function relation. Crystallographic studies, if available, define the transmembrane segments in a "frozen" state and do not provide information on the dynamics of the extramembranous loops, which are similarly evolutionary conserved and thus as functionally important as the other parts of the protein.

View Article and Find Full Text PDF

A combination of biophysical and biochemical approaches was employed to probe the topology, arrangement, and function of the large surface subdomains of SGLT1 in living cells. Using atomic force microscopy on the single molecule level, Chinese hamster ovary cells overexpressing SGLT1 were probed with atomic force microscopy tips carrying antibodies against epitopes of different subdomains. Specific single molecule recognition events were observed with antibodies against loop 6-7, loop 8-9, and loop 13-14, demonstrating the extracellular orientation of these subdomains.

View Article and Find Full Text PDF

In the apical membrane of epithelial cells from the small intestine and the kidney, the high-affinity Na+/d-glucose cotransporter SGLT1 plays a crucial role in selective sugar absorption and reabsorption. How sugars are selected at the molecular level is, however, poorly understood. Here atomic force microscopy (AFM) was employed to investigate the substrate specificity of rbSGLT1 on the single-molecule level, while competitive-uptake assays with isotope-labeled sugars were performed in the study of the stereospecificity of the overall transport.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was used to probe topology, conformational changes and initial substrate-carrier interactions of Na+-glucose co-transporter (SGLT1) in living cells on a single-molecule level. By scanning SGLT1-transfected Chinese hamster ovary (CHO) cells with AFM tips carrying an epitope-specific antibody directed against the extramembranous C-terminal loop 13, significant recognition events could be detected. Specificity was confirmed by the absence of events in nontransfected CHO cells and by the use of free antigen and free antibody superfusion.

View Article and Find Full Text PDF

Bacillus thuringiensis Cry delta-endotoxins cause death of susceptible insect larvae by forming lytic pores in the midgut epithelial cell membranes. The 65 kDa trypsin activated Cry4Ba toxin was previously shown to be capable of permeabilizing liposomes and forming ionic channels in receptor-free planar lipid bilayers. Here, magnetic ACmode (MACmode) atomic force microscopy (AFM) was used to characterize the lateral distribution and the native molecular structure of the Cry4Ba toxin in the membrane.

View Article and Find Full Text PDF

Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca.

View Article and Find Full Text PDF