Designing and integrating Fe(iii)-based spin crossover (SCO) complexes onto substrates remains a challenging goal with only a handful of examples reported. In this work, we successfully synthesized and characterized three [Fe(qsal-OR)]NO (qsal-OR = 5-alkoxy-2-[(8-quinolylimino)methyl]phenolate) complexes, in which R = CH1, CH2, and CH3 to explore the impact of alkyl chain on the modulation of SCO activity and potential for self-assembly on a glass surface. The SCO is found to be gradual and incomplete in all cases, with the LS state more stabilised as the alkyl group shortens.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2019
Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25 K.
View Article and Find Full Text PDFA series of iron(iii) complexes [Fe(naphEen)2]X·sol (naphEen = 1-{[2-(ethylamino)-ethylimino]methyl}-2-naphtholate; X = F, sol = 0.5CH2Cl2·H2O 1; sol = H2O, X = Cl, 2 and X = Br 3) and [Fe(naphEen)2]I 4 has been prepared. The UV-Vis spectra reveal clear differences for 1 which DFT/TDDFT calculations suggest are due to an equilibrium between [Fe(naphEen)2]F and [Fe(naphEen)2F], the latter having a coordinated F ligand.
View Article and Find Full Text PDF