African swine fever virus (ASFV) poses a significant threat to the global swine industry and requires improved control strategies. Here, we developed a Differentiating Infected from Vaccinated Animals (DIVA) assay based on the MGF100-1L protein, which is absent in a cell-adapted ASFV strain lacking several multigene family (MGF) genes. We analyzed seven deleted genes, including MGF genes, from the right variable region of the ASFV genome against sera from convalescent pigs.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) has been responsible for the globally devastating epidemics in wild and domesticated pigs. Of the 24 identified ASFV genotypes, genotype II is the primary cause for the pandemic occurring in Europe and Asia since its emergence in Georgia in 2007. The current study aimed to characterize the full-length genomic pattern of the ASFV strain from Thailand, TH1_22/CR (Accession No.
View Article and Find Full Text PDFAfrican swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal, contagious disease specifically in pigs. However, prevention and control of ASFV outbreaks have been hampered by the lack of an effective vaccine or antiviral treatment for ASFV. Although ASFV has been reported to adapt to a variety of continuous cell lines, the phenotypic and genetic changes associated with ASFV adaptation to MA-104 cells remain poorly understood.
View Article and Find Full Text PDFAlveolar macrophages are tissue-resident immune cells that protect epithelial cells in the alveoli from invasion by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, the interaction between macrophages and SARS-CoV-2 is inevitable. However, little is known about the role of macrophages in SARS-CoV-2 infection.
View Article and Find Full Text PDFThe use of virus-vectored platforms has increasingly gained attention in vaccine development as a means for delivering antigenic genes of interest into target hosts. Here, we describe a single-cycle influenza virus-based SARS-CoV-2 vaccine designated as scPR8-RBD-M2. The vaccine utilizes the chimeric gene encoding 2A peptide-based bicistronic protein cassette of the SARS-CoV-2 receptor-binding domain (RBD) and influenza matrix 2 (M2) protein.
View Article and Find Full Text PDFThe loss of descending serotonin (5-HT) to the spinal cord contributes to muscle spasms in chronic spinal cord injury (SCI). Hyperexcitable motoneurons receive long-lasting excitatory postsynaptic potentials (EPSPs), which activate their persistent inward currents to drive muscle spasms. Deep dorsal horn (DDH) neurons with bursting behavior could be involved in triggering the EPSPs due to loss of inhibition in the chronically 5-HT-deprived spinal cord.
View Article and Find Full Text PDFSpinal cord injury (SCI) results in a loss of serotonin (5-HT) to the spinal cord and a loss of inhibition to deep dorsal horn (DDH) neurons, which produces an exaggerated excitatory drive to motoneurons. The mechanism of this excitatory drive could involve the DDH neurons triggering long excitatory postsynaptic potentials in motoneurons, which may ultimately drive muscle spasms. Modifying the activity of DDH neurons with drugs such as NMDA or the 5-HT receptor agonist zolmitriptan could have a large effect on motoneuron activity and, therefore, on muscle spasms.
View Article and Find Full Text PDF