Publications by authors named "The-Thien Tran"

The inhaled delivery of lactic acid bacteria (LAB) probiotics has been demonstrated to exert therapeutic benefits to the lungs due to LAB's immunomodulatory activities. The development of inhaled probiotics formulation, however, is in its nascent stage limited to nebulized LAB. We developed a dry powder inhaler (DPI) formulation of (LGG) intended for bronchiectasis maintenance therapy by spray freeze drying (SFD).

View Article and Find Full Text PDF

A high alkaline pH was previously demonstrated to enhance the extraction yield of brewer's spent grains (BSG) proteins. The effects of extraction pH beyond the extraction yield, however, has not been investigated before. The present work examined the effects of extraction pH (pH 8-12) on BSG proteins' (1) amino acid compositions, (2) secondary structures, (3) thermal stability, and (4) functionalities (i.

View Article and Find Full Text PDF

Background: While particular strains within the Bacillus species, such as Bacillus subtilis, have been commercially utilised as probiotics, it is critical to implement screening assays and evaluate the safety to identify potential Bacillus probiotic strains before clinical trials. This is because some Bacillus species, including B. cereus and B.

View Article and Find Full Text PDF

An amorphous curcumin (CUR) and bovine serum albumin (BSA) nanoparticle complex (nanoplex) was previously developed as a promising anticancer nanotherapy. The CUR-BSA nanoplex had been characterized in its aqueous suspension form. The present work developed a dry-powder form of the CUR-BSA nanoplex by lyophilization using sucrose as a cryoprotectant.

View Article and Find Full Text PDF

Quercetin (QUE)-a plant-derived flavonoid, is recently established as an effective quorum sensing (QS) inhibiting agent in -the main bacterial pathogen in bronchiectasis lungs. Successful clinical application of QUE, however, is hindered by its low solubility in physiological fluids. Herein we developed a solubility enhancement strategy of QUE in the form of a stable amorphous nanoparticle complex (nanoplex) of QUE and chitosan (CHI), which was prepared by electrostatically driven complexation between ionized QUE molecules and oppositely charged CHI.

View Article and Find Full Text PDF

Antibiotic-polyelectrolyte nanoparticle complex (or nanoplex in short) has been recently demonstrated as a superior antibiotic delivery system to the native antibiotic in bronchiectasis therapy owed to its ability to overcome the lung's mucus barrier and generate high localized antibiotic exposure in the infected sites. The present work aimed to further improve the mucus permeability, hence the antibacterial efficacy of the nanoplex, by incorporating mucolytic enzyme papain (PAP) at the nanoplex formation step to produce PAP-decorated antibiotic-polyelectrolyte nanoplex exhibiting built-in mucolytic capability. Ciprofloxacin (CIP) and dextran sulfate (DXT) were used as the models for antibiotics and polyelectrolyte, respectively.

View Article and Find Full Text PDF

While the wound healing activity of curcumin (CUR) has been well-established, its clinical effectiveness remains limited due to the inherently low aqueous CUR solubility, resulting in suboptimal CUR exposure in the wound sites. Previously, we developed high-payload amorphous nanoparticle complex (or nanoplex) of CUR and chitosan (CHI) capable of CUR solubility enhancement by drug-polyelectrolyte complexation. The CUR-CHI nanoplex, however, exhibited poor colloidal stability due to its strong agglomeration tendency.

View Article and Find Full Text PDF

Inhaled antibiotic nanoparticles have emerged as an effective strategy to control infection in bronchiectasis lung owed to their mucus-penetrating ability. Using ciprofloxacin (CIP) as the model antibiotic, we evaluated dry powder inhaler (DPI) formulations of two classes of antibiotic nanoparticles (i.e.

View Article and Find Full Text PDF

Non-cystic fibrosis bronchiectasis (NCFB) characterized by permanent bronchial dilatation and recurrent infections has been clinically managed by long-term intermittent inhaled antibiotic therapy among other treatments. Herein we investigated dry powder inhaler (DPI) formulation of ciprofloxacin (CIP) nanoplex with mannitol/lactose as the excipient for NCFB therapy. The DPI of CIP nanoplex was evaluated against DPI of native CIP in terms of their (1) dissolution characteristics in artificial sputum medium, (2) ex vivo mucus permeability in sputum from NCFB and healthy individuals, (3) antibacterial efficacy in the presence of sputum against clinical Pseudomonas aeruginosa strains (planktonic and biofilm), and (4) cytotoxicity towards human lung epithelial cells.

View Article and Find Full Text PDF

The low aqueous solubility of curcumin (CUR) had greatly limited the clinical efficacy of CUR therapy despite its well-known potent therapeutic activities. Previously, we developed amorphous nanoparticle complex (nanoplex) of CUR and chitosan (CHI) as a solubility enhancement strategy of CUR by electrostatically-driven drug-polyelectrolyte complexation. The CUR-CHI nanoplex, however, (1) lacked a built-in ability to produce prolonged high apparent solubility of CUR in the absence of crystallization-inhibiting agents, and (2) exhibited poor physical stability during long-term storage.

View Article and Find Full Text PDF

The solubility enhancement afforded by amorphous drug nanoparticles was demonstrated in several studies to be superior to the traditional amorphization approach by microscale amorphous solid dispersion (or micro ASD in short). A closer look at these studies, however, revealed that they were performed using a very limited number of poorly-soluble drug models (i.e.

View Article and Find Full Text PDF

The conventional bulk mixing method to prepare amorphous drug-polysaccharide nanoparticle complex (or drug nanoplex in short) has a major drawback in the lack of size control for the nanoplex produced, hence limiting its potential applications as a supersaturating drug delivery system for bioavailability enhancement of poorly soluble drugs. For this reason, we developed a continuous millifluidic synthesis platform of the drug nanoplex exhibiting high size tunability using curcumin (CUR) and chitosan (CHI) as the models for drug and polysaccharides, respectively. The nanoplex size tunability was achieved by controlling the residence time of the CUR and CHI solutions in the millifluidic reactor, where their slow diffusive mixing at the liquid-liquid interface resulted in a well-regulated nanoplex growth as a function of the residence time.

View Article and Find Full Text PDF

High-payload amorphous drug-polysaccharide nanoparticle complex (or nanoplex in short) represents a new class of supersaturating drug delivery systems intended for bioavailability enhancement of poorly-soluble drugs. Not unlike other nanoscale amorphous formulations, the nanoplex exhibits fast dissolution characterized by a burst drug release pattern. While the burst release is ideal for supersaturation generation in the presence of crystallization inhibitor, it is not as ideal for passive targeting drug delivery applications in which the nanoplex must be delivered by itself.

View Article and Find Full Text PDF