Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans.
View Article and Find Full Text PDFCell proliferation and differentiation are regulated in a highly coordinated and inverse manner during development and tissue homeostasis. Terminal differentiation usually coincides with cell cycle exit and is thought to engage stable transcriptional repression of cell cycle genes. Here, we examine the robustness of the post-mitotic state, using Caenorhabditis elegans muscle cells as a model.
View Article and Find Full Text PDFDNA replication and its connection to M phase restraint are studied extensively at the level of single cells but rarely in the context of a developing animal. C. elegans lin-6 mutants lack DNA synthesis in postembryonic somatic cell lineages, while entry into mitosis continues.
View Article and Find Full Text PDFHeparan sulfate proteoglycans play a vital role in signaling of various growth factors in both Drosophila and vertebrates. In Drosophila, mutations in the tout velu (ttv) gene, a homolog of the mammalian EXT1 tumor suppressor gene, leads to abrogation of glycosaminoglycan (GAG) biosynthesis. This impairs distribution and signaling activities of various morphogens such as Hedgehog (Hh), Wingless (Wg), and Decapentaplegic (Dpp).
View Article and Find Full Text PDFHow cells acquire specific fates in conjunction with cell division is a major developmental question. In a recent issue of Nature, Caro and colleagues describe the Arabidopsis protein GEM, which interacts both with DNA-replication and transcriptional regulators (Caro et al., 2007).
View Article and Find Full Text PDFBackground: The Hedgehog (Hh) family of secreted growth factors are morphogens that act in development to direct growth and patterning. Mutations in human Hh and other Hh pathway components have been linked to human diseases. Analysis of Hh distribution during development indicates that cholesterol modification and receptor mediated endocytosis affect the range of Hh signaling and the cellular localization of Hh.
View Article and Find Full Text PDFMembers of the Hedgehog (Hh) family encode secreted molecules that act as potent organizers during vertebrate and invertebrate development. Post-translational modification regulates both the range and efficacy of Hh protein. One such modification is the acylation of the N-terminal cysteine of Hh.
View Article and Find Full Text PDFArch Dis Child
May 2000
Background: Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder. NBS-1, the gene defective in NBS, is located on chromosome 8q21 and has recently been cloned. The gene product, nibrin, is a novel protein, which is member of the hMre11/hRad50 protein complex, suggesting that the gene is involved in DNA double strand break repair.
View Article and Find Full Text PDFHedgehog (Hh) molecules play critical roles during development as a morphogen, and therefore their distribution must be regulated. Hh proteins undergo several modifications that tether them to the membrane. We have previously identified tout velu (ttv), a homolog of the mammalian EXT tumor suppressor gene family, as a gene required for movement of Hh.
View Article and Find Full Text PDFHedgehog (Hh) proteins act through both short-range and long-range signalling to pattern tissues during invertebrate and vertebrate development. The mechanisms allowing Hedgehog to diffuse over a long distance and to exert its long-range effects are not understood. Here we identify a new Drosophila gene, named tout-velu, that is required for diffusion of Hedgehog.
View Article and Find Full Text PDFThe human neurofibromatosis type 1 (NF1) tumor suppressor protein functions as a Ras-specific guanosine triphosphatase-activating protein, but the identity of Ras- mediated pathways modulated by NF1 remains unknown. A study of Drosophila NF1 mutants revealed that NF1 is essential for the cellular response to the neuropeptide PACAP38 (pituitary adenylyl cyclase-activating polypeptide) at the neuromuscular junction. The peptide induced a 100-fold enhancement of potassium currents by activating the Ras-Raf and adenylyl cyclase-adenosine 3',5'-monophosphate (cAMP) pathways.
View Article and Find Full Text PDFThe neurofibromatosis type 1 (NF1) tumor suppressor protein is thought to restrict cell proliferation by functioning as a Ras-specific guanosine triphosphatase-activating protein. However, Drosophila homozygous for null mutations of an NF1 homolog showed no obvious signs of perturbed Ras1-mediated signaling. Loss of NF1 resulted in a reduction in size of larvae, pupae, and adults.
View Article and Find Full Text PDFThe GTPase-activating protein related domain of the human neurofibromatosis type 1 protein (NF1GRD) can down-regulate RAS in Saccharomyces cerevisiae. Using a technique termed the FASAY method, for Functional Analysis of Separated Alleles in Yeast, we designed a rapid method for detection of heterozygous NF1GRD loss-of-function mutations. In our method, PCR amplified NF1GRD cDNA is directly cloned into a centromeric vector by homologous recombination in a cdc25 temperature-sensitive mutant strain expressing human Ha-ras.
View Article and Find Full Text PDFThe formation of complexes between oncoproteins of DNA tumor viruses and the cellular protein p53 is thought to result in inactivation of the growth suppressor function of p53. In cells transformed by nononcogenic human adenovirus type 5 (Ad5), the 55-kDa protein encoded by E1B forms a stable complex with p53 and sequesters it in the cytoplasm. However, the homologous 54-kDa protein of highly oncogenic Ad12 does not detectably associate with p53.
View Article and Find Full Text PDFP-glycoproteins can cause multidrug resistance in mammalian tumor cells by active extrusion of cytotoxic drugs. The natural function of these evolutionarily conserved, membrane-bound ATP binding transport proteins is unknown. In mammals, P-glycoproteins are abundantly present in organs associated with the digestive tract.
View Article and Find Full Text PDFThe introduction of human chromosome 17 suppresses the tumourigenicity of a neuroblastoma cell line in the absence of any effects on in vitro growth and the neurofibromatosis type 1 (NF1) gene may be responsible. Here we report that 4 out of 10 human neuroblastoma lines express little or no neurofibromin and that two of these lines show evidence of NF1 mutations, providing further proof that NF1 mutations occur in tumours that are not commonly found in NF1 patients. We also show that NF1 deficient neuroblastomas show only moderately elevated ras-GTP levels, in contrast to NF1 tumour cells, indicating that neurofibromin contributes differently to the negative regulation of ras in different cell types.
View Article and Find Full Text PDFP-glycoproteins, encoded by families of evolutionarily conserved genes, can confer a multidrug-resistant phenotype to mammalian tumor cells. To obtain more information on their functions in normal cells we have cloned genomic and complementary DNA sequences of four P-glycoprotein gene homologs of the genetically well-characterized nematode Caenorhabditis elegans, termed pgp-1, pgp-2, pgp-3 and pgp-4, respectively. The genes were physically mapped on chromosome IV (pgp-1), I (pgp-2) and X (pgp-3 and pgp-4).
View Article and Find Full Text PDFPhys Rev D Part Fields
June 1987