Publications by authors named "Thayumanasamy Somasundaram"

Lombricine kinase is a member of the phosphagen kinase family and a homolog of creatine and arginine kinases, enzymes responsible for buffering cellular ATP levels. Structures of lombricine kinase from the marine worm Urechis caupo were determined by x-ray crystallography. One form was crystallized as a nucleotide complex, and the other was substrate-free.

View Article and Find Full Text PDF

Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded.

View Article and Find Full Text PDF

Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold, a protein architecture that exhibits a characteristic threefold axis of structural symmetry. FGF-1 contains 11 beta-turns, the majority being type I 3:5; however, a type I 4:6 turn is also found at three symmetry-related locations. The relative uniqueness of the type I 4:6 turn in the FGF-1 structure suggests it may play a key role in the stability, folding, or function of the protein.

View Article and Find Full Text PDF

A 1.10-A atomic resolution X-ray structure of human fibroblast growth factor 1 (FGF-1), a member of the beta-trefoil superfold, has been determined. The beta-trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3-fold structural symmetry (comprising 3 "trefoil" units).

View Article and Find Full Text PDF

The atomic structure of adeno-associated virus 2 (AAV-2) has been determined to 3.0 A resolution. AAV-2 crystallized in space group P1, with unit-cell parameters a = 249.

View Article and Find Full Text PDF

Arginine kinase is a member of the phosphagen kinase family that includes creatine kinase and likely shares a common reaction mechanism in catalyzing the buffering of cellular ATP energy levels. Abstraction of a proton from the substrate guanidinium by a catalytic base has long been thought to be an early mechanistic step. The structure of arginine kinase as a transition state analog complex (Zhou, G.

View Article and Find Full Text PDF

Arginine kinase (AK) is a member of the guanidino kinase family that plays an important role in buffering ATP concentration in cells with high and fluctuating energy demands. The AK specifically catalyzes the reversible phosphoryl transfer between ATP and arginine. We have determined the crystal structure of AK from the horseshoe crab (Limulus polyphemus) in its open (substrate-free) form.

View Article and Find Full Text PDF

The three-dimensional crystal structure of an arginine kinase transition-state analogue complex has been refined at 1.2 A resolution, with an overall R factor of 12.3%.

View Article and Find Full Text PDF

The structure of the adeno-associated virus (AAV-2) has been determined to 3-A resolution by x-ray crystallography. AAV is being developed as a vector for gene therapy to treat diseases including hemophilia, cancer, and cystic fibrosis. As in the distantly related autonomous parvoviruses, the capsid protein has a beta-barrel fold, but long loops between the beta-strands share little structural homology with other parvoviruses, leading to unique surface features.

View Article and Find Full Text PDF
Article Synopsis
  • An antiparallel actin dimer is identified as a key intermediate in the process of actin filament nucleation, influenced by latrunculin A.
  • The study shows that latrunculin A halts actin polymerization by stabilizing these dimers, which can be detected through fluorescence when made with pyrene-labeled actin.
  • The crystallographic analysis reveals a 3.5-A resolution structure of the polylysine-actin-latrunculin A complex, confirming the dimer's antiparallel arrangement and suggesting how these dimers can lead to the formation of filamentous actin structures.
View Article and Find Full Text PDF