Objective: The aim of this study was to compare the results obtained using SpectroView® (SV) and J-Magnetic Resonance User Interface (jMRUI) from the same magnetic resonance (MR) spectroscopy of hydrogen data.
Methods: Data from 23 males with alcohol use disorder (AUD) and 23 healthy non-AUD males were acquired by a 1.5 Tesla MR using a PRESS sequence (TE=30 ms) in four voxels located in the right frontal and left frontal (RF and LF) lobes, and posterior cingulate (AC and PC).
Front Psychiatry
April 2019
Alcohol consumption seems to affect corpus callosum morphometry irrespectively of an alcohol use disorder (AUD) diagnosis. The present study examined the relationship between corpus callosum (CC) subregion volumes and alcohol use patterns in AUD and non-AUD subjects. Twenty-two male AUD patients and 23 healthy matched non-AUD subjects were recruited from March 2016 to July 2017.
View Article and Find Full Text PDFExcessive and long-term alcohol consumption produce metabolic changes, such as of choline, in many brain regions in alcohol use disorder (AUD) and in non-AUD subjects as well. This study examined the association of choline proportion in the prefrontal cortex with pattern of alcohol use in AUD patients. The choline metabolite was acquired through a single voxel Proton Magnetic Resonance Spectroscopy (H MRS).
View Article and Find Full Text PDFBackground: The intestinal dysbiosis is common in chronic liver disease and can induce to inflammatory responses and mediate the collagen deposition in the liver.
Aim: To evaluate the probiotic Lactobacillus rhamnosus GG (LGG) for the treatment of liver fibrosis in a model of chronic cholestatic liver disease in rats.
Methods: Male adult Wistar rats (n = 29) were submitted to common bile duct ligation (BDL groups) or manipulation of common bile duct without ligation (Ctrl groups).
Hepatic encephalopathy (HE) is a neuropsychiatric disorder that occurs due to acute and chronic liver diseases, the hallmark of which is the increased levels of ammonia and subsequent alterations in glutamine synthesis, i.e. conditions associated with the pathophysiology of HE.
View Article and Find Full Text PDFHepatic encephalopathy (HE) is a neurologic disorder that involves different pathophysiological mechanisms, including disturbances in the GABAergic neurotransmitter system. Albeit an overall increase in the level of neurotransmitter GABA has not been found in HE, alterations in GABA receptors and metabolism have been described. Moreover, it has been reported that bile duct ligated (BDL) rats, an animal model for the study of HE, exhibited an altered GABA biosynthesis involving preferentially the tricarboxylic (TCA) cycle.
View Article and Find Full Text PDFHepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to cognitive deficits. Different animal models for the study of HE have demonstrated learning and memory impairment and a number of neurotransmitter systems have been proposed to be involved in this. Recently, it was described that bile duct-ligated (BDL) rats exhibited altered spatio-temporal locomotor and exploratory activities and biosynthesis of neurotransmitter GABA in brain cortices.
View Article and Find Full Text PDFThe zebrafish has been used as an animal model for studies of several human diseases. It can serve as a powerful preclinical platform for studies of molecular events and therapeutic strategies as well as for evaluating the physiological mechanisms of some pathologies. There are relatively few publications related to adult zebrafish physiology of organs and systems, which may lead researchers to infer that the basic techniques needed to allow the exploration of zebrafish systems are lacking.
View Article and Find Full Text PDFBackground: Nonalcoholic fatty liver disease is one of the most prevalent forms of chronic liver disease in the Western world. Taurine is a conditionally essential amino acid in humans that may be a promising therapy for treating this disease.
Aim: To evaluate the effect of taurine on hepatic steatosis induced by thioacetamide in Danio rerio.