White spot syndrome virus (WSSV) and Enterocytozoon hepatopenaei (EHP) represent the most economically destructive pathogens in the current shrimp industry. WSSV causes white spot disease (WSD) responsible for rapid shrimp mortality, while EHP stunts growth and therefore reduces overall productivity. Despite the importance of timely disease detection, current diagnostic methods for WSSV and EHP are typically singleplex, and those offering multiplex detection face issues such as complexity, low field compatibility and/or low sensitivity.
View Article and Find Full Text PDFEcto-nucleotide pyrophosphatases/phosphodiesterases 1 (ENPP1) is a key enzyme in purinergic signaling pathways responsible for cell-to-cell communications and regulation of several fundamental pathophysiological processes. In this study, Kyoto Green, a rapid chemical sensor of pyrophosphate, was employed to screen for effective ENPP1 inhibitors among five representative flavonoids (quercetin, myricetin, morin, kaempferol, and quercetin-3-glucoside), five nucleosides (adenosine, guanosine, inosine, uridine, and cytidine), and five deoxynucleosides (2'- and 3'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxyinosine, and 2'-deoxyuridine). Conventional colorimetric, fluorescence, and bioluminescence assays revealed that ENPP1 was effectively inhibited by quercetin (K ~ 4 nM) and myricetin (K ~ 32 nM) when ATP was used as a substrate at pH 7.
View Article and Find Full Text PDFCarboxysomes are protein microcompartments that function in the bacterial CO concentrating mechanism (CCM) to facilitate CO assimilation. To do so, carboxysomes assemble from thousands of constituent proteins into an icosahedral shell, which encapsulates the enzymes Rubisco and carbonic anhydrase to form structures typically > 100 nm and > 300 megadaltons. Although many of the protein interactions driving the assembly process have been determined, it remains unknown how size and composition are precisely controlled.
View Article and Find Full Text PDFAcute Hepatopancreatic Necrosis Disease (AHPND), caused by bacterial isolates expressing PirAB binary toxins, represents the severest and most economically destructive disease affecting penaeid shrimp. Its rapid disease progression and associated massive mortalities call for vigilant monitoring and early diagnosis, but molecular detection methods that simultaneously satisfy the requirements of sensitivity, specificity, and portability are still scarce. In this work, the CRISPR-Cas12a technology was harnessed for the development of two fluorescent assays compatible with naked-eye visualization.
View Article and Find Full Text PDFScale drop disease virus (SDDV) is a major pathogen of Asian sea bass that has emerged in many countries across the Asia Pacific since 1992 and carries the potential to cause drastic economic losses to the aquaculture sector. The lack of an approved vaccine for SDDV necessitates timely prevention as the first line of defence against the disease, but current diagnostic platforms still face challenges that render them incompatible with field applications, particularly in resource-limited settings. Here, we developed a novel detection platform for SDDV based on a CRISPR-Cas12a-based nucleic acid detection technology combined with recombinase polymerase amplification (RPA-Cas12a).
View Article and Find Full Text PDFBackground: Viruses cause significant economic losses to shrimp aquaculture worldwide. In severe cases, they can lead to 100% mortality within a matter of days, hence the aquaculture industry requires antiviral strategies to minimize economic impacts. Currently, a double-stranded RNA (dsRNA)-based platform has been proven effective at a laboratory scale.
View Article and Find Full Text PDFDisease is a major limiting factor in the global production of cultivated shrimp. The microsporidian parasite Enterocytozoon hepatopenaei (EHP) was formally characterized in 2009 as a rare infection of the black tiger shrimp Penaeus monodon. It remained relatively unstudied until mid-2010, after which infection with EHP became increasingly common in the Pacific whiteleg shrimp Penaeus vannamei, by then the most common shrimp species farmed in Asia.
View Article and Find Full Text PDF(EHP) is a parasite that infects pacific whiteleg shrimp, , causing growth retardation and uneven size distributions that lead to severe losses in shrimp productivity. Routine monitoring is crucial to timely prevention and management of EHP, but field-deployable diagnostic kits for EHP are still scarce. Here, we proposed the use of recombinase polymerase amplification (RPA) and CRISPR-Cas12a fluorescence assay, henceforth RPA-Cas12a, for detection of EHP.
View Article and Find Full Text PDFCarboxysomes are bacterial microcompartments that function as the centerpiece of the bacterial CO-concentrating mechanism by facilitating high CO concentrations near the carboxylase Rubisco. The carboxysome self-assembles from thousands of individual proteins into icosahedral-like particles with a dense enzyme cargo encapsulated within a proteinaceous shell. In the case of the α-carboxysome, there is little molecular insight into protein-protein interactions that drive the assembly process.
View Article and Find Full Text PDFUnlike that of vertebrates, the penaeid shrimp stomach is of ectodermic origin and is thus covered by a cuticle that is sloughed upon molting. It is composed of two chambers, here called the anterior and posterior stomach chambers, ASC and PSC, respectively. The PSC contains a filtration structure variously called a pyloric filter, filter press, gastric filter or gastric sieve (GS), and the last of these will be used here.
View Article and Find Full Text PDFCompartmentalization is both a fundamental principle of cellular organization and an emerging theme in prokaryotic biology. Work in the past few decades has shown that protein-based organelles called microcompartments enhance the function of encapsulated cargo proteins. More recently, the repertoire of known prokaryotic organelles has expanded beyond microcompartments to include a new class of smaller proteinaceous compartments, termed nanocompartments (also known as encapsulins).
View Article and Find Full Text PDFMany bacteria employ a protein organelle, the carboxysome, to catalyze carbon dioxide fixation in the Calvin Cycle. Only 10 genes from Halothiobacillus neapolitanus are sufficient for heterologous expression of carboxysomes in Escherichia coli, opening the door to detailed mechanistic analysis of the assembly process of this complex (more than 200MDa). One of these genes, csoS2, has been implicated in assembly but ascribing a molecular function is confounded by the observation that the single csoS2 gene yields expression of two gene products and both display an apparent molecular weight incongruent with the predicted amino acid sequence.
View Article and Find Full Text PDF