Background: Medicinal plants have historically been the cornerstone of treatment for a myriad of ailments. With modern pharmacology, many contemporary drugs have been derived from traditional medicine practices. Essential oils from these plants, known for their anti-inflammatory capabilities, have played a significant role in treating conditions such as cardiovascular and inflammatory skin diseases, as well as joint inflammation.
View Article and Find Full Text PDFGlobally, industrial biotechnology addresses diverse challenges, fostering environmental conservation, sustainable development, economic growth, and innovation. Currently, there are approximately 20,922 biotech companies worldwide, including 6,653 in the US, reflecting significant growth. The global biotech market is valued at $727.
View Article and Find Full Text PDFBioactive substances are utilized to treat a variety of diseases. Green lignin-mediated silver nanoparticles (L-Ag-NPs) have significant promise as a building block in the production of bio-renovation materials. The work optimized organic acid extraction to remove lignin from residual fermented hybrid Napier grass byproducts.
View Article and Find Full Text PDFThe adoption of sustainable agricultural practices is increasingly imperative in addressing global food security and environmental concerns, with microbial based bio-inoculums emerging as a promising approach for nurturing soil health and fostering sustainable crop production.This review article explores the potential of microbial based bio-inoculumsor biofertilizers as a transformative approach toenhance plant disease resistance and growth. It explores the commercial prospects of biofertilizers, highlighting their role in addressing environmental concerns associated with conventional fertilizers while meeting the growing demand for eco-friendly agricultural practices.
View Article and Find Full Text PDFIn order to comply with the stringent discharge guidelines issued by governmental organizations to protect the ecosystem, the substantial amounts of effluent and sturdy wastes produced by the beer brewing process need to be discarded or handled in the most affordable and secure manner. Huge quantities of waste material released with each brew bestow a significant opportunity for the brewing sector to move towards sustainability. The concept of circular economy and the development of technological advancements in brewery waste processing have spurred interest to valorize brewery waste for implementation in various sectors of medical and food science, industrial science, and many more intriguing fields.
View Article and Find Full Text PDFThe human respiratory syncytial virus (RSV) creates a pandemic every year in several countries in the world. Lack of target therapeutics and absence of vaccines have prompted scientists to create novel vaccines or small chemical treatments against RSV's numerous targets. The matrix (M) protein and fusion (F) glycoprotein of RSV are well characterized and attractive drug targets.
View Article and Find Full Text PDFCellulases are enzymes that aid in the hydrolysis of cellulosic fibers and have a wide range of industrial uses. In the present study, sequence alignment between cellulases from different species revealed that most of the residues are conserved in those aligned enzymes. Three dimensional structures of cellulase enzymes from 23 different species have been predicted and based on the alignment between the modeled structures, those enzymes have been categorized into 7 different groups according to the homology in their conformational folds.
View Article and Find Full Text PDFManganese peroxidase (MnP), a microbial ligninolytic enzyme which plays significant role in lignin and melanoidin degradation has gained much attention in the field of industry. In the present study, 15 ligninolytic bacteria were isolated from the soil sample of Similipal Biosphere Reserve (SBR) and screened for MnP activity. The most efficient MnP-producing bacterium HNB5 was evaluated for alkali lignin and maillard reaction products (MRPs) degradation and identified as using 16S rRNA sequencing.
View Article and Find Full Text PDFFour laccase-producing bacteria were found in soil samples from the Similipal Biosphere Reserve in Odisha, according to the current study. The isolates (SLCB1 to SLCB4) were evaluated for their laccase-producing ability in LB broth supplemented with guaiacol. The ABTS assay was performed to assess the laccase activity.
View Article and Find Full Text PDFLignin is a complex of organic polymers that are abundantly present in the plant cell wall which considered of emerging substrates for various kinds of value-added industrial products. Lignin has potential use for the production of green nanomaterials, which exhibit improved or different properties corresponding to their parent polymers. Nano lignin has received significant interest in recent years due to its applications in numerous fields.
View Article and Find Full Text PDFLignin, a highly heterogeneous polymer of lignocellulosic biomass, is intricately associated with cellulose and hemicellulose, responsible for its strength and rigidity. Lignin decomposition is carried out through certain enzymes derived from microorganisms to promote the hydrolysis of lignin. Analyzing multi-omics data helps to emphasize the probable value of fungal-produced enzymes to degrade the lignocellulosic material, which provides them an advantage in their ecological niches.
View Article and Find Full Text PDFAmong 24 isolated cellulolytic bacteria from Similipal Biosphere Reserve, the most efficient isolate was recognized as a strain of Bacillus albus. This strain of B. albus was evaluated for cellulase production and the cellulase activity was measured in submerged fermentation using substrate carboxymethyl cellulose (CMC).
View Article and Find Full Text PDFIn the last 3 years of the pandemic situation, SARS-CoV-2 caused a significant number of deaths. Infection rates for symptomatic and asymptomatic patients are higher than that for death. Eventually, researchers explored that the major deaths are attributed to several comorbidity factors.
View Article and Find Full Text PDFLaccase is a delignifying enzyme that belongs to the oxidoreductase family, and it has long been investigated as a pretreatment agent in biofuel production. In this study, amino acid sequences of five bacterial laccases from , , , and have been retrieved from UniProtKB for sequence alignment, phylogenetic analysis using MEGA 7.0 and 3 D structure prediction by homology modeling in SWISS-MODEL.
View Article and Find Full Text PDFIntroduction: Since its inception, Coronavirus disease-19 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has claimed a significant number of lives around the world.
Area Covered: COVID-19 vaccine development involves several vaccine platforms, including traditional live-attenuated or killed viral particles, viral vectors or DNA, and mRNA-based vaccines. The efficacy and effectiveness (EV) of these vaccines must be assessed in order to determine the extent to which they can protect us against infection.
Background: Lignin is a complex polymer of phenyl propanoid units found in the vascular tissues of the plants as one of lignocellulose materials. Many bacteria secrete enzymes to lyse lignin, which can be essential to ease the production of bioethanol. Current research focused on the study of ligninolytic bacteria capable of producing lignin peroxidase (LiP) which can help in lignin biodegradation and bioethanol production.
View Article and Find Full Text PDFThe rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019 (COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work aims to study the molecular -docking and dynamic of three pertinent medicinal plants , and phyto-compounds against SARS-COV-2 papain-like protease (PL) and main protease (M)/3-chymotrypsin-like protease (3CL). The interaction of protein targets and ligands was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020.
View Article and Find Full Text PDFHexavalent chromium is a highly toxic element generated due to indiscriminate chromite mining in Sukinda, Odisha. In the present research investigation a relatively higher Cr(VI) resistant (900 mg L) bacterium CWB-54 was isolated from the chromite mine water. Based on the biochemical and molecular analysis the strain (CWB-54) was identified as Exiguobacterium mexicanum.
View Article and Find Full Text PDFThe inherent resistance of lignocellulosic biomass makes it impervious for industrially important enzymes such as cellulases to hydrolyze cellulose. Further, the competitive absorption behavior of lignin and hemicellulose for cellulases, due to their electron-rich surfaces augments the inappropriate utilization of these enzymes. Hence, modification of the surface charge of the cellulases to reduce its non-specific binding to lignin and enhance its affinity for cellulose is an urgent necessity.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2022
In December 2019, COVID-19 epidemic was reported in Wuhan, China, and subsequently the infection has spread all over the world and became pandemic. The death toll associated with the pandemic is increasing day by day in a high rate. Herein, an effort has been made to identify the potentiality of commercially available drugs and also their probable derivatives for creation of better opportunity to make more powerful drugs against coronavirus.
View Article and Find Full Text PDFBackground: Xylanase has long been recognized as a widely used industrially important enzyme. There are some bacterial species already reported to produce xylanase which have potent xylanolytic activity towards the use of this enzyme in the production of bioethanol from lignocellulosic biomass. In this view, an efficient xylanolytic bacterial strain was isolated and screened from the soil sample of Simlipal Biosphere Reserve.
View Article and Find Full Text PDFBackground: Nowadays, medicines derived from natural sources have drawn much attention as potential therapeutic agents in the suppression and treatment of cancer because of their low toxicity and fewer side effects.
Objective: The present review aims to assess the currently available knowledge on the ethnomedicinal uses and pharmacological activities of bioactive compounds obtained from medicinal mushrooms towards cancer treatment.
Methods: A literature search has been conducted for the collection of research papers from universally accepted scientific databases.
Recently, a corona virus disease (COVID-19) caused by a novel corona virus (sevier acute respiratory syndrome corona virus 2; SARS-CoV-2), rapidly spread throughout the world. It has been resulted an unprecedented public health crisis and has become a global threat. WHO declared it as a pandemic due to rapid transmission and severity of the disease.
View Article and Find Full Text PDFBoth pectin and pectinase are vitally imperative biomolecules in the biotechnological sector. These molecules are a feasible non-toxic contrivance of nature with extensive applicative perception. Understanding pectic substances and their structure, unique depolymerization, and biochemical properties such as a catalytic mechanism and the strong interrelationship among these molecules could immensely enhance their applicability in industries.
View Article and Find Full Text PDFRapid industrialization and consumption of fossil fuels have led to considerable progress in the production of renewable biofuels like bioethanol. Lignocellulosic biomass such as grasses serves as cheap feedstocks for the production of bioethanol. However, the process involved in lignocellulosic bioethanol production is expensive which restricts its industrial production.
View Article and Find Full Text PDF