Publications by authors named "Tharmala Tharmalingam"

Passive immunization with polyclonal hyper immunoglobulin (HIG) therapy represents a proven strategy by transferring immunoglobulins to patients to confer immediate protection against a range of pathogens including infectious agents and toxins. Distinct from active immunization, the protection is passive and the immunoglobulins will clear from the system; therefore, administration of an effective dose must be maintained for prophylaxis or treatment until a natural adaptive immune response is mounted or the pathogen/agent is cleared. The current review provides an overview of this technology, key considerations to address different pathogens, and suggested improvements.

View Article and Find Full Text PDF

Regulatory guidelines require the sponsors to provide assurance of clonality of the production cell line, and when such evidence is not available, additional studies are typically required to further ensure consistent long-term manufacturing of the product. One potential approach to provide such assurance of clonal derivation of a production cell line is to characterize subclones generated from the original cell line and assess their phenotypic and genotypic similarity with the hypothesis that cell lines derived from a clonal bank will share performance, productivity and product quality characteristics. In this study, a production cell line that was cloned by a validated FACS approach coupled with day 0 imaging for verification of single-cell deposition was subcloned using validated FACS and imaging methods.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NET) are formed against pathogens. However, various diseases are directly linked to this meshwork of DNA. The cytotoxic properties of extracellular histones especially seem to be an important trigger during these diseases.

View Article and Find Full Text PDF

Glycosylation is a critical characteristic of biotherapeutics because of its central role in in vivo efficacy. Multiple factors including medium composition and process conditions impact protein glycosylation and characterizing cellular response to these changes is essential to understand the underlying relationships. Current practice typically involves glycosylation characterization at the end of a fed-batch culture, which in addition to being an aggregate of the process, reflects a bias towards the end of the culture where a majority of the product is made.

View Article and Find Full Text PDF

Pluronic® F68 (P-F68) is an important component of chemically-defined cell culture medium because it protects cells from hydrodynamic and bubble-induced shear in the bioreactor. While P-F68 is typically used in cell culture medium at a concentration of 1 g/L (0.1%), higher concentrations can offer additional shear protection and have also been shown to be beneficial during cryopreservation.

View Article and Find Full Text PDF

The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound.

View Article and Find Full Text PDF

Many disorders are characterised by changes in O-glycosylation, but analysis of O-glycosylation has been limited by the availability of specific endo- and exo-glycosidases. As a result chemical methods are employed. However, these may give rise to glycan degradation, so therefore novel O-glycosidases are needed.

View Article and Find Full Text PDF

Mucus within the cervical canal represents a hormonally regulated barrier that reconciles the need to exclude the vaginal microflora from the uterus during progesterone dominance, while permitting sperm transport at estrus. Its characteristics change during the estrous cycle to facilitate these competing functional requirements. Hydrated mucin glycoproteins synthesized by the endocervical epithelium form the molecular scaffold of this mucus.

View Article and Find Full Text PDF

Many post-translational modifications, including glycosylation, are pivotal for the structural integrity, location and functional activity of glycoproteins. Sub-populations of proteins that are relocated or functionally changed by such modifications can change resting proteins into active ones, mediating specific effector functions, as in the case of monoclonal antibodies. To ensure safe and efficacious drugs it is essential to employ appropriate robust, quantitative analytical strategies that can (i) perform detailed glycan structural analysis, (ii) characterise specific subsets of glycans to assess known critical features of therapeutic activities (iii) rapidly profile glycan pools for at-line monitoring or high level batch to batch screening.

View Article and Find Full Text PDF

Background: Non-invasive biomarkers, such as those from serum, are ideal for disease prognosis, staging and monitoring. In the past decade, our understanding of the importance of glycosylation changes with disease has evolved.

Scope Of Review: We describe potential biomarkers derived from serum glycoproteins for liver, pancreatic, prostate, ovarian, breast, lung and stomach cancers.

View Article and Find Full Text PDF

Glycosylation modifications have been reported in a number of disease states and, as a result, there is significant focus on the discovery and development of glycan-based biomarkers. Glyco-biomarkers have the potential to enhance the efficacy and efficiency of the diagnostic procedures for these diseases.

View Article and Find Full Text PDF

Glycomics has been proven to be challenging when compared to genomics, transcriptomics, or proteomics. Understanding glycans is difficult as they have a non-template driven biosynthesis and their structural characterization requires highly efficient techniques. This review will describe the robotic platform developed in our laboratory for high-throughput analysis of N-glycans, and some of the advances obtained in the Glyco-biomarker field obtained in the last three years, including the first Genome-Wide Association Study showing a direct link between DNA polymorphisms and glycosylation.

View Article and Find Full Text PDF
Article Synopsis
  • Mild hypothermic conditions (30-33 degrees C) can enhance the production of recombinant proteins like beta-interferon from CHO cells, but generally results in slower cell growth.
  • Researchers adapted CHO cells to low temperatures for 300 days, achieving twice the growth rate while retaining high levels of protein expression at 32 degrees C.
  • Using macroporous microcarriers helped protect the fragile low-temperature-adapted cells, leading to a threefold increase in beta-interferon production compared to standard conditions at 37 degrees C.
View Article and Find Full Text PDF

Macroporous microcarriers such as Cytopore entrap mammalian cells in a mesh network allowing growth to high cell concentrations in a protected environment within a stirred culture. Chinese hamster ovary (CHO) cells producing recombinant human beta-interferon (IFN-beta) and grown in Cytopore microcarriers showed a 2.6- to 2.

View Article and Find Full Text PDF