Recently, nanofiber-based wound dressings are currently a viable strategy to expedite the healing of wounds by providing a suitable microenvironment for tissue growth with active ingredients. This research study subjects the development of electrospun cellulose acetate (CA) nanofibers loaded with the XLAsp-P2, an antimicrobial peptide (AMP) that holds great potential for enhanced wound healing as a therapeutic agent. The synthesized XLAsp-P2-loaded CA nanofibers were fabricated via three loading percentages, 0.
View Article and Find Full Text PDFEnzyme reactions are complex to simulate accurately, and none more so than glycoenzymes (glycosyltransferase and glycosidases). A rigorous sampling of the protein frame and the conformationally plural carbohydrate substrate coupled with an unbiased treatment of the electron dynamics is needed to discover the true reaction landscapes. Here, we demonstrate the effectiveness of two computational methods ported in libraries that we have developed.
View Article and Find Full Text PDFProtein-ligand binding prediction is central to the drug-discovery process. This often follows an analysis of genomics data for protein targets and then protei n structure discovery. However, the complexity of performing reproducible protein conformational analysis and ligand binding calculations, using vetted methods and protocols can be a challenge.
View Article and Find Full Text PDFThis paper is a tutorial developed for the data analysis platform Galaxy. The purpose of Galaxy is to make high-throughput computational data analysis, such as molecular dynamics, a structured, reproducible and transparent process. In this tutorial we focus on 3 questions: How are protein-ligand systems parameterized for molecular dynamics simulation? What kind of analysis can be carried out on molecular trajectories? How can high-throughput MD be used to study multiple ligands? After finishing you will have learned about force-fields and MD parameterization, how to conduct MD simulation and analysis for a protein-ligand system, and understand how different molecular interactions contribute to the binding affinity of ligands to the Hsp90 protein.
View Article and Find Full Text PDFWhen faced with the investigation of the preferential binding of a series of ligands against a known target, the solution is not always evident from single structure analysis. An ensemble of structures generated from computer simulations is valuable; however, visual analysis of the extensive structural data can be overwhelming. Rapid analysis of trajectory data, with tools available in the Galaxy platform, can be used to understand key features and compare differences that inform the preferential ligand structure that favors binding.
View Article and Find Full Text PDFBiomolecular Reaction and Interaction Dynamics Global Environment (BRIDGE) is an open-source web platform developed with the aim to provide an environment for the design of reliable methods to conduct reproducible biomolecular simulations. It is built on the well-known Galaxy bioinformatics platform. Through this, BRIDGE hosts computational chemistry tools on public web servers for internet use and provides machine- and operating-system-independent portability using the Docker container platform for local use.
View Article and Find Full Text PDFProtoCaller is a Python library distributed through Anaconda which automates relative protein-ligand binding free energy calculations in GROMACS. It links a number of popular specialized tools used to perform protein setup and parametrization, such as PDB2PQR, Modeller, and AmberTools. ProtoCaller supports commonly used AMBER force fields with additional cofactor parameters, and AM1-BCC is used to derive ligand charges.
View Article and Find Full Text PDFMotivation: The pathway from genomics through proteomics and onto a molecular description of biochemical processes makes the discovery of drugs and biomaterials possible. A research framework common to genomics and proteomics is needed to conduct biomolecular simulations that will connect biological data to the dynamic molecular mechanisms of enzymes and proteins. Novice biomolecular modelers are faced with the daunting task of complex setups and a myriad of possible choices preventing their use of molecular simulations and their ability to conduct reliable and reproducible computations that can be shared with collaborators and verified for procedural accuracy.
View Article and Find Full Text PDFThis study explores the potential application of rice bran (agro waste) to nano-encapsulate phytase, which is a thermally unstable biologically active enzyme. Rice bran was converted to nanofibers (20-50 nm in diameter) using electrospinning. After optimizing the pH, viscosity, voltage and the distance between electrodes for electrospinning, phytase enzyme was encapsulated and the fibers were cross-linked using sodium tripolyphosphate.
View Article and Find Full Text PDF