Publications by authors named "Tharindu P B Rajakaruna"

Manipulating dynamic behaviours of charge carriers and excitons in organic light-emitting diodes (OLEDs) is essential to simultaneously achieve high colour purity and superior operational lifetime. In this work, a comprehensive transient electroluminescence investigation reveals that incorporating a thermally activated delayed fluorescence assistant molecule with a deep lowest unoccupied molecular orbital into a bipolar host matrix effectively traps the injected electrons. Meanwhile, the behaviours of hole injection and transport are still dominantly governed by host molecules.

View Article and Find Full Text PDF

In our previous publication, we published a simple, low-cost, and environmentally friendly process for the breaking down of the ilmenite lattice using rotary autoclaving, separation of titanium and iron components, and the conversion of the titanium component to amorphous TiO and phase-specific titanium dioxide nanorods. Here, the separated iron component was converted into iron oxide (magnetite and hematite) and iron oxy-hydroxide (akaganeite, β-FeOOH) nanoparticles. The process flow diagram is presented to explain the steps involved.

View Article and Find Full Text PDF

The current rate of industrial production of titanium dioxide, from natural ilmenite, is around 6500 kT per annum. The two main processes used, namely, sulfate and chloride processes, require concentrated corrosive acids and drastic conditions, such as 1000 °C, in open processes, thus contributing to considerable costs and environmental pollution. To reduce the cost and impact to the environment, a closed process involving a rotatory autoclaving followed by refluxing and stationary solvothermal treatment of ilmenite, below 170 °C, was developed.

View Article and Find Full Text PDF