Publications by authors named "Tharallah Shoker"

Article Synopsis
  • A variety of bulky amines with three alkyl groups at the nitrogen were synthesized, surpassing triisopropylamine in steric crowding.
  • The most effective method involved treating -chlorodialkylamines with organometallic compounds, utilizing excess tetramethylenediamine.
  • The study revealed that these amines could undergo dealkylation at room temperature, producing olefins, and highlighted the role of protic conditions and water in accelerating the reaction, while bases did not have the same effect.
View Article and Find Full Text PDF

Several amines with three bulky alkyl groups at the nitrogen atom, which exceed the steric crowding of triisopropylamine significantly, were synthesized, mainly by treating N-chlorodialkylamines with Grignard reagents. In six cases, namely tert-butyldiisopropylamine, 1-adamantyl-tert-butylisopropylamine, di-1-adamantylamines with an additional N-cyclohexyl or N-exo-2-norbonyl substituent, as well as 2,2,6,6-tetramethylpiperidine derivatives with N-cyclohexyl or N-neopentyl groups, appropriate single crystals were generated that enabled X-ray diffraction studies and analysis of the molecular structures. The four noncyclic amines adopt triskele-like conformations, and the sum of the three C-N-C angles is always in the range of 351.

View Article and Find Full Text PDF

Ten different processes (Methods A-J) were tested to prepare tertiary amines bearing bulky alkyl groups. In particular, S1 alkylation of secondary amines with the help of 1-adamantyl triflate (Method D) and reaction of N-chlorodialkylamines with organometallic reagents (Method H), but also attack of the latter reagents at iminium salts, which were generated in situ by N-alkylation of imines (Method J), led to trialkylamines with unprecedented steric congestion. These products showed a restriction of the rotation about the C-N bond.

View Article and Find Full Text PDF

We report a new water soluble and stable thiolate/disulfide redox couple (T(-)/DS) and its use with a new zwitterionic and thiocyanate-free dye (T169) in a 100% aqueous electrolyte system. A DSSC incorporating T169 and the T(-)/DS showed the highest photocurrents (Jsc = 13.30 mA cm(-2)) and IPCE% (84%) values reported to date.

View Article and Find Full Text PDF

We report a self-referenced ratiometric nanothermometer based on short conjugated polyelectrolytes. An amphiphilic macromolecule destabilizes the polymer π-π stacking and makes it possible to shift the equilibrium between the less emissive aggregated state (520 nm) and the brighter individual chain (450 nm) within 20.0 °C and 70.

View Article and Find Full Text PDF

A new thiolate/disulfide organic-based electrolyte system composed of the tetrabutylammonium salt of 2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole-3-thiol (S(-)) and its oxidized form 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole) (DS) has been formulated and used in dye-sensitized solar cells (DSSCs). The electrocatalytic activity of different counter electrodes (CEs) has been evaluated by means of measuring J-V curves, cyclic voltammetry, Tafel plots, and electrochemical impedance spectroscopy. A stable and low-temperature CE based on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) was investigated with our S(-)/DS, I(-)/I3(-), T(-)/T2, and Co(II/III)-based electrolyte systems.

View Article and Find Full Text PDF

A new class of cyclometalated ruthenium complexes, Ru(C^N^N')(N^N'^N'')·Cl where N^N'^N'' = 4,4',4''-tricarboxy-2,2':6',2''-terpyridine and C^N^N' = substituted 6-phenyl-2,2'-bipyridine, for Dye Sensitized Solar Cells (DSSCs) is proposed. We have investigated the effect of different substituents (R = COOH, thiophen-2-yl, F and OCH(3)) on the ancillary C^N^N' ligand on the photophysical properties and performance of the six different cyclometalated ruthenium complexes in DSSCs. Using an ionic liquid based electrolyte, efficiencies up to η = 3.

View Article and Find Full Text PDF

Acid catalyzed Friedlander reactions of a number of 2,3-dihydro-1H-cyclopenta[b]quinoxaline-1-ones with 2-aminobenzaldehyde yield, unexpectedly, 8H-indolo[3,2-a]phenazine and quinolino[2,3-c]cyclopentadienone[2,3-b]quinoxalines, the structures of derivatives of which were confirmed by X-ray crystallography. Easy routes to novel quinoxaline-based indoles, quinolones, and quinoxaline-1,4-dioxides are reported, and proposed mechanisms for the unexpected products are discussed.

View Article and Find Full Text PDF

We report the alkoxylation of methyl-substituted quinoxalino[2,3-c]cinnolines to give acetals and orthoesters in high yields. Routes to the precursors of this alkoxylation reaction as well as other quinoxalino[2,3-c]cinnoline and their 5-oxide derivatives are reported. Most of these quinoxalino[2,3-c]cinnolines were prepared by cyclization of the corresponding 2-amino-3-(2-nitrophenyl)quinoxaline, which, in turn, result from an unusual Beirut reaction from benzofurazan oxides plus 2-nitrobenzylcyanides.

View Article and Find Full Text PDF